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1. Introduction

One of the outstanding quests in modern theoretical physics is the unification of
the four fundamental forces. There have been several theories around that partly
fulfill this goal, all succeeding in some (different) aspects of such a theory. We will
give an introduction to one of them, namely, noncommutative geometry. It is a
bottom-up approach in that it unifies the well-established Standard Model of high-
energy physics with Einstein’s general theory of relativity, thus not starting with
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extra dimensions, loops or strings. All this fits nicely in a mathematical framework,
which was established by Connes in the 1980’s [1].

Of course, there is a price that one has to pay for having such a rigid math-
ematical basis: at present the unification has been obtained only at the classical
level. The main reason for this can actually be found in any gauge theory (such as
Yang—Mills theory) as well: its quantization is still waiting for a sound mathematical
description. The noncommutative geometrical description of (classical) Yang—Mills
theories — or the Standard Model, for that matter — minimally coupled to gravity
encounters the same trouble in formulating the corresponding quantum theory, in
addition troubled by the quantization of gravity. It needs no stressing that this
situation needs to be improved (though some progress have been made recently,
see the Outlook), and it is our hope that this review paper strengthens the dialog
with, for instance, string theory or quantum gravity. Intriguingly, noncommutative
spacetimes naturally appear in the context of both of these theories. In string the-
ory, this started with the work of Seiberg and Witten [2], in loop quantum gravity
the quantized area operator is a manifestation of an underlying quantum geom-
etry (cf. [3] and references therein). This has lead to a fruitful acre where ideas
from the fields involved are combined: noncommutative geometry and string theory
already in [4], see the recent account in [5] and references therein; noncommutative
geometry and loop quantum gravity in [6-8] and more recently in [9].

Even though the noncommutative description of the Standard Model [10] does
not require the introduction of extra spacetime dimensions, its construction is very
much like the original Kaluza—Klein theories [11, 12]. In fact, one starts with a
product

M x F

of ordinary four-dimensional spacetime M with an internal space F which is to
describe the gauge content of the theory. Of course, spacetime itself still describes
the gravitational part. The main difference with Kaluza—Klein theories is that the
additional space is a discrete (zero-dimensional) space whose structure is described
by a (potentially) noncommutative algebra, the idea essentially dating back to [13].
This is very much like the description of spacetime M by its coordinate functions as
usual in General Relativity, which form an algebra under pointwise multiplication:

(@"2")(p) = =" (p)z" (p)-
Such commutative relations are secretly used in any physics textbook. However, for
a discrete space, there are not many coordinates so we propose to describe F' by
matrices instead, yielding a much richer internal (algebraic) structure. Multiplica-
tion is given by ordinary matrix multiplication:

(AB)u =Y AiBji.
J

The corresponding matriz algebra of coordinates on F' is typically My (C) or direct
sums thereof. It turns out (and we will explain that below) that one can also
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describe a metric on F' in terms of algebraic data, so that we can fully describe the
geometrical structure of M x F. This type of noncommutative manifolds are called
almost-commutative (AC) manifolds, in contrast with the more serious noncommu-
tative spaces such as the Moyal plane appearing in, say, Seiberg—Witten theory and
for which (in contrast with the above)

[x*, 2"] = ih.

We stress that this is not the type of noncommutativity that we are dealing with
here. Nevertheless, also such spaces fit in the framework of noncommutative geom-
etry, see for instance [14, 15] for the compact and [16, 17] for the noncompact
case.

In this review paper, we will give several examples of almost-commutative
manifolds of interest in physics. In fact, adopting the chronological order of ordi-
nary high-energy physics textbooks, we will derive electrodynamics, the Glashow—
Weinberg—Salam electroweak theory, and the full Standard Model (including Higgs
mechanism) from noncommutative spaces.

Let us briefly sketch how this goes, at the same time giving an overview of the
present paper. Given an AC manifold M x F, one first studies its symmetries: it
turns out that the group of diffeomorphisms (i.e. general coordinate transforma-
tions) generalized to such noncommutative spaces combines ordinary diffeomor-
phisms of M with gauge symmetries [18]. In other words, for the above three
examples we obtain a combination of general coordinate transformations on M
with the respective groups U(1), U(1) x SU(2) and finally U(1) x SU(2) x SU(3),
appearing as unitaries in the corresponding matrix algebras. This is the first hint
at the aforementioned unification of gauge theories with gravity. All of these are
described at length in Sec. 2 below.

The next step is to construct a Lagrangian from the geometry of M x F. This is
accomplished by the spectral action principle [19, 20]: it is a simple counting of the
eigenvalues of a Dirac operator on M X F' which are lower than a cut-off A. This is
discussed in Sec. 3, where we derive local formulas (integrals of Lagrangians) for the
spectral action using heat kernel methods (cf. [21]). The fermionic action is given
as usual by an inner product. The Lagrangians that one obtains in this way for the
above examples are the right ones, and in addition minimally coupled to gravity.
This is unification with gravity of electrodynamics, the Glashow—Weinberg—Salam
electroweak theory, and finally the full Standard Model. This is presented in the
respective Secs. 4-6.

We study conformal invariance of the spectral action in Sec. 7, with particular
emphasis on the Higgs mechanism coupled to the gravitational background. This
has already found fruitful applications in cosmology [22-26].

Finally, in Sec. 8, we present some predictions that can be derived from the
noncommutative description of the Standard Model (based on [10]). In fact, the
Lagrangian derived through the spectral action principle from the relevant non-
commutative space is not just the Standard Model Lagrangian, but it implies that
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there are relations between some of the Standard Model couplings and masses. This
allows for a postdiction of (an upper bound on) the top quark mass, and a prediction
of the Higgs mass.

We end by presenting an Outlook on some future developments.

The main source to the noncommutative description of the Standard Model
is [10] or, for the more mathematically inclined reader, the book [27], on which
our discussion is heavily based. However, we attempt to make this material more
accessible to theoretical physicists by adopting a light version of noncommuta-
tive geometry and describing separately the electromagnetic and electroweak the-
ory. The case of electrodynamics was first formulated in noncommutative terms
only quite recently in [28]. There are also some shorter companions on the appli-
cations of noncommutative geometry to high-energy physics such as [29] and
[30, 31].

For more general treatments on noncommutative geometry, presented in its full
mathematical glory, we refer to [32-35] or the original [1].

2. Almost-Commutative Manifolds and Gauge Theories
2.1. Spin manifolds in noncommutative geometry

One of the central ideas in Connes’ noncommutative geometry [1] is to characterize
ordinary Riemannian manifolds by a spectral data. By generalizing this spectral
data in a suitable way, one arrives at the notion of a noncommutative manifold.
Within this generalization, we will focus on the special case of what is called an
almost-commutative manifold. This special case is given by the “noncommutative-
geometric product” M x F of a Riemannian manifold M and a finite space F as
described in the next section.

Before we are ready to provide a description of an almost-commutative man-
ifold, let us first focus on a reformulation of the description of an ordinary Rie-
mannian manifold. We restrict ourselves to the case of a compact four-dimensional
Riemannian spin manifold M. The restriction on the dimension is just for nota-
tional simplicity and by no means essential; the d-dimensional case can readily be
obtained. Our aim in this section is to illustrate how one replaces the usual topo-
logical and geometric description of M by a spectral data in terms of operators
on a Hilbert space. In the next section, we will see that this spectral description
of manifolds also perfectly lends itself for the description of so-called finite spaces,
and subsequently of almost-commutative manifolds.

The first step in noncommutative geometry is to shift our focus from the man-
ifold M towards the coordinate functions on M. We will thus consider the set of
smooth (infinitely differentiable) functions C'*°(M). These functions form an alge-
bra under pointwise multiplication. As said, we restrict our attention to a spin
manifold M, so that we may also consider the spinor bundle S — M, and spinor
fields on M are then given by (smooth) sections ¢ € T'(M,S). We will consider
the Hilbert space H = L2(M,S) of square-integrable spinors on M. The algebra
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A = C>(M) acts on ‘H as multiplication operators by pointwise scalar multiplica-
tion (fv)(x) := f(x)y(x) for a function f and a spinor field 1.

Using the spin (Levi-Civita) connection V° on the spinor bundle S, we can
describe the Dirac operator Ip. In local coordinates, D is given by —in#V%, in
terms of the Dirac gamma matrices v#. The Dirac operator acts as a first-order
differential operator on the spinors ¢ € I'(M, S). The spin connection satisfies the
Leibniz rule

Vo (fe) = V5 (W) + (0uf),

for all functions f € C°°(M) and all spinors ¢ € I'(S). For the commutator [, f]
acting as an operator on %, we then calculate

[, flp = —iy" V5 (f) + if y*Vih = —iy" (0, f ). (2.1)

Therefore we see that the action of [I, f] is simply given by multiplication with
—iy*(8,.f). In particular, this means that although I is an unbounded operator,
the commutator [ID, f] is always a bounded operator for any smooth function f €
C°°(M). In fact, this bounded operator is given by the Clifford representation of the
1-form df = dx*0, f. Let us gather all data described here so far into the following
definition.

Definition 2.1. Let M be a compact four-dimensional Riemannian spin manifold.
The canonical triple is given by the set of data

(C>(M),L*(M, S), ).

2,34

Furthermore, we also have a Zo-grading s := v'+?~3~*, and an antilinear isomor-

phism Jps, which is the charge conjugation operator on the spinors.

The operator 75 is a Zp-grading, which means that 52 = 1, 7% = 75, and 75
decomposes the Hilbert space L?(M,S) = L?(M,S)™ & L?(M,S)~ into a positive
and a negative eigenspace: chirality. With respect to this grading, the Dirac operator
is an odd operator, which means that 7y5) = —IPvys. In other words, we have
D L*(M,S)* — L*(M,S)T. For the charge conjugation operator Jjs, one obtains
the relations Jy2 = —1, Jy P = DJy and Jnys = V5

It turns out that a compact Riemannian spin manifold M can be fully described
by this canonical triple [18, 36]. The canonical triple is the motivating example for
the definition of so-called spectral triples (see Remark 2.2), and as such it lies at
the foundation of noncommutative geometry.

2.1.1. Geodesic distance

The claim that a Riemannian spin manifold M is fully described by the canonical
triple suggests that we are able to recover the Riemannian geometry of M from
the data given with the canonical triple. We shall illustrate how this works by

1230004-7



K. van den Dungen € W. D. van Suijlekom

considering the notion of distance. The usual geodesic distance between two points
x and y in M is given by

1
dy(z,y) = inf/ds = inf/ /G YR (E)F7 (t)dt,
v ~y v 0

where ds? = g, dz*dx” and the infimum is taken over all paths ~ from z to y, with
parametrizations such that v(0) = z and (1) = y. Let us confront this formula
with the following distance formula in terms of the data in the canonical triple:

dp(z,y) = sup{|f(z) = f(y)| : f € CF(M), ||[D, fIll < 1}. (2.2)
Because we take a supremum over functions that locally have “slope” less than or
equal to 1, we can indeed measure the Riemannian distance between two points in
this dual manner. Full details can be found in, e.g., [27, Proposition 1.119]. Thus,
the geometric structure of M is captured into the Dirac operator I). Later on, we
will use (2.2) to generalize the geodesic distance to a notion of distance on almost-
commutative manifolds. It has been noted in [37, 38] that this distance formula,
in the case of locally compact complete manifolds, is in fact a reformulation of the
Wasserstein distance in the theory of optimal transport.

Remark 2.1. We stress that the spin manifolds that can be captured in this
way are Riemannian and not pseudo-Riemannian. In particular, this leaves out
Lorentzian manifolds, which are of particular interest in physics. The reason for this
is that dealing with Dirac operators on pseudo-Riemannian manifolds is technically
difficult, since one loses the property of these being elliptic operators. Some progress
in this direction has been obtained in [39-46] though this program is far from being
completed.

2.2. Almost-commutative manifolds

In the previous section we have provided an alternative algebraic description of a
spin manifold M in terms of the canonical triple (C>° (M), L?(M, S), D), following
Connes [1]. In this section we will define the notion of an almost-commutative
manifold as a generalization of spin manifolds.

Such manifolds already appeared in the work of Connes and Lott [13] and around
the same time in a series of papers by Dubois—Violette, Kerner and Madore [47-50],
who studied the noncommutative differential geometry for the algebra of func-
tions tensored with a matrix algebra, and its relevance to the description of gauge
and Higgs fields. Almost-commutative manifolds were later used by Chamseddine,
Connes and Marcolli [10] to geometrically describe Yang-Mills theories and the
Standard Model of elementary particles. The name almost-commutative manifolds
was coined in [51], their classification started in [52] (see also the more recent
[29, 53]).

The general idea is to take the “product” M x F' of the spin manifold M with
some finite space F', which in general may be noncommutative. Whereas the canon-
ical triple encodes the structure of the spacetime M, the finite space F' will be used
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to encode the “internal degrees of freedom” at each point in spacetime. The main
goal of this section is to show how these internal degrees of freedom will lead to the
description of a gauge theory on M.

Analogously to our description of a spin manifold M, we will describe a (gener-
ally noncommutative) finite space F by a triple

F = (.AF,HF,DF).

Here we now have a finite-dimensional complex Hilbert space H g, say of dimension
N. The algebra Ap is a (real or complex) matrix algebra, which acts on the Hilbert
space via matrix multiplication. The operator Dp is given by a complex N x N-
matrix acting on Hg, and Dp is required to be hermitian.

Example 2.1. Consider the matrix algebra Ap = My (C) of N x N matrices
acting on itself by left matrix multiplication, i.e. Hp = My(C). The operator Dp
is simply a hermitian N? x N? matrix, N2 being the dimension of Hp.

Suppose that the Hilbert space Hp is Zo-graded, i.e. there exists a grading
operator v for which 75 = vp and yp% = 1. This grading operator decomposes
the Hilbert space Hp = Hj @ Hp into its two eigenspaces, where HE := {1 €
Hp | vrp = £}, If such a grading operator exists, we say that the finite space F'
is even if furthermore we have [yp,a] = 0 for all « € Ap and ypDp = —Dpyp.
In other words, for an even finite space we require that the elements of the algebra
are even operators and that Dp is an odd operator. Thus, in the above example, a
grading v = 1 would force Dp to vanish.

Let M be a compact four-dimensional spin manifold. We will now take
the “noncommutative-geometric product” of M with some even finite space F
as described above. The resulting product space M x F is called an almost-
commutative (spin) manifold, or AC-manifold, and provides a generalization of
compact Riemannian spin manifolds to the mildly noncommutative world.

Definition 2.2. An even almost-commutative (spin) manifold, or AC-manifold, is
described by

M x F:=(C®(M, Ar),L*(M,S) @ Hp, D @ 1+ v5 @ Dp),

together with a grading v = 75 ® vr. The operator D := ) @ [ + v5 ® Dp is called
the Dirac operator of the almost-commutative manifold.

The canonical triple describing a spin manifold M, is a special case of an almost-
commutative manifold M x F. Indeed, if we take for the finite space F' the simple
choice (Ap,Hr,Dr) = (C,C,0), then the almost-commutative manifold M x F
is identical to the canonical triple for M. This can be interpreted as taking the
product of M with a single point: the functions on the point constitute the algebra
C, the spinor fields on the points form C and the Dirac operator cannot be anything
else but 0.
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Table 1. Spin manifolds versus finite spaces.

Data Spin manifold M Finite space F
Algebra A Coordinate functions Internal structure
Hilbert space H  Spinor fields Particle content
Operator D Dirac operator Ip Yukawa mass matrix Dp

Let us take a closer look at the data in the triple describing an almost-
commutative manifold M x F'. In order to understand how to interpret these data,
consider Table 1 for a comparison between a spin manifold M and a finite space F'.
Both M and F' are described by a triple, consisting of an algebra, a Hilbert space,
and an operator on this Hilbert space. For the spin manifold M, the algebra is given
by the coordinate functions on M. The algebra for the finite space F is typically
a matrix algebra, which might be noncommutative. This matrix algebra may be
interpreted as describing the “internal structure” of each point in spacetime. For
the almost-commutative manifold this combines to give matrix-valued coordinate
functions, which describe not only spacetime, but also the internal structure of
spacetime.

The Hilbert spaces are used to describe fermionic particles. The Hilbert space
L?3(M, S) for the spin manifold M makes sure that each fermion is described by
a spinor field. In the finite space F', we shall interpret each basis element of the
Hilbert space Hp as describing a different fermionic particle. The Hilbert space Hp
thus encodes the fermionic particle content of the model.

The properties of each fermion, and the interactions among the fermions, will
be determined by the way in which the algebra A and the operator D act on the
fermions. The Dirac operator I) acts as a first-order differential operator on the
spinors, and this will provide us with the kinetics of the fermions through the Dirac
equation D = 0. The finite Dirac operator D contains the Yukawa masses of the
fermions, and therefore Dy will sometimes be referred to as the Yukawa operator.
Lastly, the action of the finite algebra Ag on the fermions will determine their gauge
interactions. We will consider this at length in what follows, but observe already
that the gauge particle content is described by the internal degrees of freedom.

2.2.1. Generalized distance on AC-manifolds

In (2.2) we have found an alternative formula for the geodesic distance on a spin
manifold M. We can straightforwardly generalize this formula to provide a notion
of distance on almost-commutative manifolds, and define the generalized distance
function by

dp(z,y) = sup{[la(z) — a(y)| : a € A, [[[D, a]|| < 1}. (2.3)

where | - || is the (matrix) norm in Ap. This distance formula has been studied in
more detail in for instance [54, 55].
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2.2.2. Charge conjugation

For a spin manifold M, we have a charge conjugation operator Jj;. This operator
is an anti-unitary operator acting on the Hilbert space H = L?(M, S) of square-
integrable spinors. We would like to have a similar notion of a conjugation operator
Jp for a finite space F'. This operator Jr will be called a real structure, and is
defined as follows.

Definition 2.3. An (even) finite space F' is called real if there exists a real structure
Jp, i.e. an anti-unitary operator Jr on Hr such that JI% =¢,JpDp = &'DpJr and
(if F is even) Jpyp = €”vpJp. The signs €, ¢’ and ” depend on the KO-dimension
n modulo 8 of the finite space, according to the following table.?

n |0 1 2 3 4 5 6 7
e |1 1 -1 -1 -1 -1 11
g1 -1 1 1 1 -1 11
e” |1 -1 1 -1

Moreover, the action of Ap satisfies the commutation rule
[a,0°] =0, VYa,be Ar, (2.4)
where we have defined the right action b° of b by
b0 = Jpb* Jp. (2.5)
The operator Dy satisfies the so-called order one condition
[[DF,a),t°] =0, VYa,bec Ap. (2.6)

If a finite space F' is real, then the corresponding almost-commutative manifold
M x F is automatically also real, because the operator J := Jy; ® Jp then deter-

mines a real structure of KO-dimension n + 4 mod 8 for the almost-commutative
manifold M x F.

Example 2.2. Let us provide a general example of an almost-commutative mani-
fold, which later on will be shown to describe a Yang—Mills gauge theory. Consider
the finite space FYy,, given by the triple

Fy, = (Mn(C), My(C),0).

Both the algebra Ap and the Hilbert space Hp are given by the complex N x N-
matrices. The action of Ap on Hp is simply given by left matrix multiplication. The
finite Dirac operator is taken to be zero. We endow this finite space with the trivial
grading given by the identity matrix vr := Iy (note that the relation ypDp =
—Dpvr is now only satisfied by virtue of D being zero). The real structure Jg is
defined as taking the hermitian conjugate of a matrix m € Hp, i.e. Jpm := m*. We

2Note that in particular these signs cannot be independently chosen: in the odd case there is no
grading and hence no sign €”, and in the even case the sign ¢’ is always equal to 1.
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then have that Jy = Jp. In (2.5), we have defined the right action of an element
be Ar by b° := Jpb*J}. In this case, we see that

W¥m = Jpb*Jpm = Jpb*m* = mb,

so the action of b¥ is indeed given by right matrix multiplication with b. One then
readily checks that Jp defines a real structure of KO-dimension 0. We now define
the Yang—Mills manifold as the almost-commutative manifold

M x FYM = (COC(M7MN(C))7L2(M75) ®MN(C)alD®H)»

with a grading v := 75 ® [y and a real structure J := Jy ® Jp of KO-dimension
4. Throughout this section, we will frequently return to this illustrative example.

Lemma 2.1. For any real even finite space F, we can write with respect to the
decomposition H = HT & H™:

] 0
KO-dimension 0: Jp = (JS— , ) C  for symmetric j+ € U(HF);
J—

0 .
KO-dimension 2: Jpg ( ]> C for jj* =j%j=1;

_jT 0

j 0
KO-dimension 4: Jp = (j()+ ) ) C  for anti-symmetric j1 € U(HT);
j

0 i
KO-dimension 6: Jgp = <~T ‘]> ¢ for jj* =457 =1L
7 0

Proof. Let the operator C' denote complex conjugation. Then any anti-unitary
operator Jp can be written as UC, where U is some unitary operator on Hpr. We
then have J5 = CU* = UTC, and JpJi = UU* = L. The different possibilities
for the choice of Jp are characterized by the relations J% =UCUC =UU = ¢
and Jpyp = ¢”’vpJp. By inserting ¢,&” = +1 according to the KO-dimension, the
exact form of Jp can be directly computed by imposing these relations. O

Note that in the above lemma we have not yet used all aspects of the definition
of the real structure Jp. There are still two commutation rules that are required to
be satisfied, namely

[a,0°] =0, VYa,be Ap,
[[Dp,a],b°] =0, VYa,be Ap,

where b := Jrb*J; (see Definition 2.3). Furthermore, we must have JrDp =
DpJr for even KO-dimensions. We will not examine the precise implications of
these commutation rules here, but one should be aware that these rules impose
further restrictions on the operators Dp and Jp. Later on in Proposition 4.1, we
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will use these restrictions to show that the two-point space does not simultaneously
allow a real structure Jr and a non-zero Dirac operator Dpg.

Remark 2.2. An almost-commutative manifold is a special case of a spectral triple
(see, e.g., [27, Chap. 1, §10]). In general, a spectral triple (A, H, D) is given by
an involutive unital algebra A represented faithfully as bounded operators on a
Hilbert space H and a selfadjoint (in general unbounded) operator D with compact
resolvent (i.e. (1+ D?)~2 is a compact operator) such that all commutators [D, a]
are bounded for a € A. A spectral triple is even if the Hilbert space H is endowed
with a Zs-grading v which commutes with any a € A and anticommutes with D.
A spectral triple has a real structure of KO-dimension n if there is an antilinear
isomorphism J : H — H with J? = ¢, JD = ¢/ DJ and, if the spectral triple is even,
Jv = e”~J, where the signs are again determined by the table in Definition 2.3.

Even though many definitions and results that follow in this section equally
well apply to spectral triples in general, we will only present them in terms of
almost-commutative manifolds. The reason is that we want to put main emphasis
on explicit results for almost-commutative manifolds, avoiding the more technical
notion of spectral triple. For our purposes we shall therefore have no need for a
description of spectral triples in general. So, from here on we shall consider a real
even almost-commutative manifold M x F', as described by the following data, using
the notation as above:

An algebra A = C*>°(M, Ar);

A Hilbert space H = L?(M, S) @ Hp;
An operator D = P @1 + 75 ® D on H;
A Zs-grading v = 5 @ yp on H;

A real structure J = Jyy ® Jp on H.

2.3. Subgroups and subalgebras

In this section, we shall have a closer look at the algebra A = C*°(M, Ar), and
especially at some of its subalgebras and subgroups. These subsets are presented
here in preparation for the next section, in which we shall discuss the gauge group.

2.3.1. Commutative subalgebras
We define a subalgebra of A by
Ay ={ac AlaJ =Ja*} ={ac Ala® =a}.

This definition is very similar to the definition of A; in [10, Proposition 3.3] (cf.
(27, Proposition 1.125]), which is a real commutative subalgebra in the center of A.
We have provided a similar but different definition for A J, since this subalgebra
will turn out to be very useful for the description of the gauge group in Sec. 2.4.3.
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Let us assume that the algebra A is complex. We easily see that aJ = Ja*
implies a = Ja*J* = a° and vice versa. Since we must have [a,b°] = 0 for any
a,b e A (cf. (2.4)), we have [a,b] = 0 for any a € A and b € Ay, so A; is contained
in the center of A. The requirement ¢ = a® is complex linear, and also implies
that a* = (a°)* = (a*), so we have a* € A for a € Aj. Finally, we check that
for a,b € ./ZJ, we find (ab)? = b°a® = ba = ab, so ab € Aj. Therefore, A; is an
involutive commutative complex subalgebra of the center of A.

If we consider a finite space F, the definition of (.,ZF) Jr is exactly as given
above, so it is the subalgebra of A determined by the relation aJp = Jpa*. For
an almost-commutative manifold M x F', we have the real structure J = Jy ® Jp.
Since the effect of Jy; on a function on M is simply complex conjugation, we obtain
that the requirement aJ = Ja* must be satisfied pointwise, i.e. a(z)Jr = Jpa(z)*,
for a(z) € Ap. This implies that for a € A; we obtain a(z) € (Ap),,. Thus, for
an almost-commutative manifold, the subalgebra A J is given by

-/IJ = COO(M’ (-’Z(F)JF)'

Example 2.3. Let us return to the Yang—Mills manifold M x Fy,, of Example 2.2.
We have already seen that the right action was given by a®m = ma. If we consider
the requirement a® = a, we see that this implies that ¢ must commute with all
N x N-matrices m € Hp, so a is contained in the center Cly of My (C). For the
Yang-Mills manifold, we thus obtain that A; ~ C>(M) ® Iy.

2.3.2. Unitary subgroups
The unitary group U(A) of a unital, involutive algebra A is defined by

U(A) ={ue Ajuwu* = u*u =1T}.

The conjugation on A = C*° (M, Ar) is given by pointwise conjugation on Ag. So,
the requirement uu* = v*u = I must hold for each x € M, which gives u(z)u(x)* =
u(z)*u(z) = 1. Hence, u € U(A) & u(z) € U(Ap), and the unitary group is given
by U(A) = C=(M,U(Ar)).

The Lie algebra of this unitary group is given by all anti-hermitian elements of
the algebra:

u(A) = {X € A|X* = —X}. (2.7)

As for the unitary group, we now obtain u(A) = C®°(M,u(Ar)).

For the finite-dimensional algebra Apg, an element a € Ap acts on the finite
Hilbert space Hp via matrix multiplication. Therefore, we can define the determi-
nant det(a) of an element a € Ap simply as the determinant of this matrix. We
can then define the special unitary group SU(Ar) by

SU(Ap) = {u € U(Ap) | det(u) = 1}.
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The Lie algebra of SU(Ap) consists of the traceless anti-hermitian elements
su(Ap) ={X e Ap | X" = =X, Tr(X) = 0}.

The condition det(u) = 1 or Tr(X) = 0 is often referred to as the unimodularity
condition.

2.3.3. The adjoint action

For a finite space F' := (Ap,Hp,Dp,vr,Jr), the operator Jr provides a right
action of a € Ar on Hp by a® = Jpa*J}%, as in (2.5). Using this right action, we
can define maps Ad : U(Ar) — End(Hr) and ad : u(Ar) — End(Hr) by

(Adu)é := ugu” = u(u*)%,
(ad A)¢ == AL — €A = (A - A°)¢,
for ¢ € Hp. By inserting a® = Jra*J;, we obtain
Adu =uJuJ*,
adA=A—JA T = A+ JAJ*, for A" =—-A.
If we would replace A = iB, we could then define
ad B := —iad(iB) = B— JBJ*, for B* = B. (2.8)

The maps Adu and ad A are often called the adjoint representations of u and A,
respectively, on the Hilbert space Hp.

Let us consider the adjoint action Adu for an element u € U (.,ZJ) in the unitary
group of the subalgebra A J. Since in this subalgebra we have uJ = Ju*, we see
that Adu = uJuJ* = Juu*J* = 1. In other words, the group U(./ZJ) acts trivially
via the adjoint representation. We obtain a similar result for the Lie algebra u(.,Z J)-
If we take a hermitian element X = X* € iu(A,), we sce that ad X = X — JXJ* =
X-X*=0.

2.4. Gauge symmetry
2.4.1. Diffeomorphisms and automorphisms

For a spin manifold M, we have the group of diffeomorphisms Diff(M), which are
smooth invertible maps from M to M. A diffeomorphism is given by a coordinate
transformation, and the algebraic object corresponding to this coordinate trans-
formation is an automorphism (i.e. an invertible algebra homomorphism) from the
algebra C°°(M) to itself. Namely, for a diffeomorphism ¢ : M — M, we can define
the automorphism a : f — f o ¢~ for a function f € C°°(M). For an algebra A,
we denote by Aut(A) the group of algebra automorphisms of A. For the algebra
of coordinate functions we then have Aut(C>(M)) ~ Diff(M). Based on this iso-
morphism, we will define the group of diffeomorphisms of an almost-commutative
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manifold as
Diff(M x F) := Aut(C* (M, Ar)).

A diffeomorphism ¢ € Diff(M) will also yield a diffeomorphism of M x F', namely for
a € C*(M, Ar) we again define the automorphism ay : a — a o ¢~1. More explic-
itly, we thus have (ay(a))(z) := a(¢~'(z)). However, because of the “internal struc-
ture” of the almost-commutative manifold, given by the finite algebra Ap, there
are now more automorphisms than just the diffeomorphisms of M. For instance, for
a function u € C*°(M,U(Ar)) which takes values in the unitary elements of Ap,
we can define the automorphism «,, : a — uau®, so (ay,(a))(z) = u(x)a(x)u*(z). In
the mathematics literature, such automorphisms are called inner automorphisms,
and the group of inner automorphisms «,, : a — uau* is denoted by Inn(A).

The group Inn(.A) is always a normal subgroup of Aut(A), which can be shown
as follows. For 8 € Aut(A) and «, € Inn(A), we find that

Boay o a) = Buf™ (a)u”) = Bu)ab(u)" = agu).-
This means that we can define the outer automorphisms by the quotient
Out(A) := Aut(A)/Inn(A).

An inner automorphism «,, is completely determined by the unitary element
u € U(A), but it is not uniquely determined by u. In other words, the map ¢ :
U(A) — Inn(A) : u — « is surjective, but it is not injective. The kernel is given
by Ker(¢) = {u € U(A)|uau* = a,Va € A}. The relation uau* = a implies
ua = au for all a € A. Let Z be the subgroup of U(A) that commutes with A.
We thus see that Ker(¢) = Z. In other words, the group of inner automorphisms is
given by the quotient

Inn(A) ~U(A)/Z. (2.9)

2.4.2. Unitary transformations

We would like to study the notion of ‘symmetry’ for almost-commutative mani-
folds. Since the symmetry of an ordinary manifold M is determined by its group
of diffeomorphisms Diff(M ), we might be inclined to define the symmetry group of
an almost-commutative manifold as Diff(M x F') := Aut(C>° (M, Ap)). However,
it turns out that an almost-commutative manifold has an even richer symmetry,
which we will now attempt to derive.

Our starting point will be the notion of a unitary transformation as defined
below. The symmetry will then be revealed when it turns out that the bosonic
and fermionic action functionals, as defined in Sec. 2.6.1, are invariant under these
unitary transformations. We take our definition of unitary transformations from [32,
§6.9], but make a slight modification by incorporating the algebra isomorphism c.

Let M x F be an almost-commutative manifold given by the triple (A4, H, D).
Let us now explicitly write the representation 7 of the algebra A on the Hilbert
space H, so the action of a on H is given by 7 (a).
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Definition 2.4. A unitary transformation of the almost-commutative manifold is
given by a unitary operator U : H — H. This unitary transformation yields the
triple (A, H, UDU™), where the action of the algebra A on the Hilbert space is
now given by Un(a)U*. If the almost-commutative manifold is even, the grading
v transforms into UyU*, and if the almost-commutative manifold is real, the real
structure J transforms into UJU*.

Let us consider two basic examples of such unitary transformations on a real
even almost-commutative manifold M x F'. First, we consider the unitary operator
U = m(u) given by a unitary element of the algebra, so u € U(A). Since the grading
commutes with the algebra, we see that - is unaffected by this transformation. For
the action of the algebra, we obtain that Un(a)U* = m(u)w(a)m(u*) = m(uau*) =
7 o ay(a) for the inner automorphism «,,.

Second, let us consider the adjoint action of the unitary group U(A), so we take
the unitary transformation U = Ad u = uJuJ*. The grading is again unaffected by
the transformation, since 7(u)Jm(u)J*y = (¢’)?ym(u)Jmw(u)J*. Because Jr(u)J*
commutes with 7(a) (cf. (2.4)), we find that

Urn(a)U* = 7w(w)Jm(u)J* w(a)Jm(u)" J*m(u)" = w(u)r(a)Jm(uw) ]  Jr(u)* T mw(u)*
=m(u)r(a)m(u)* = m(uau™) = 7o ay,(a).
Using J* = €J, we see that
J' =U0JU" = n(u)Jr(uw)J* JIm(uw)" J*r(u)* = 7(u)Jr(u)Jm(w)* T w(u)*
=m(u)Jm(u)m(u)* Jr(u)* J* = 7(u)JJr(u)*J* =eJ* = J.

Hence we find that the unitary transformation of the AC manifold yields the data
(A, H, UDU™,~, J), where the action of the algebra is again given by moa,,(a). This
second case is especially interesting because we see that the unitary transformation
has no effect on J. The group generated by all operators of the form U = uJuJ*
characterizes equivalent AC-manifolds (A, H, UDU™,~, J), in which only the Dirac

operator is affected by the unitary transformation. This group shall be interpreted
as the gauge group, and this interpretation will later be justified by Theorem 2.1.

2.4.3. The gauge group

Definition 2.5. For a real almost-commutative manifold M x F' given by the data
(A, H, D, J), we define the gauge group G(M x F) as

GM x F) :={U =uJuJ*|uc U(A)}.

In order to evaluate this gauge group in more detail, let us consider the map
Ad : U(A) — G(M x F) given by u + u(u*)?. This map Ad is by definition
surjective. And, indeed Ad is a group homomorphism, since the commutation rela-
tion [a, JbJ*] = 0 of (2.4) implies that Ad(b) Ad(a) = bJbJ*aJaJ* = baJbaJ* =
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Ad(ba). This map has kernel Ker(Ad) = {u € U(A)|uJuJ* = 1}. The rela-
tion uJuJ* = 1 is equivalent to uJ = Ju*, and we note that this is the defin-
ing relation of the commutative subalgebra A (see Sec. 2.3.1). Hence we have
Ker(Ad) = U(Ay). We thus obtain the isomorphism

G(M x F) ~U(A)/U(Ay). (2.10)

From Sec. 2.3.1 we know that ./Z(J is a subalgebra of the center of A. Hence the
group U (./ZJ) of the previous proposition is contained in the subgroup Z of U(A).
From (2.9) and (2.10), we then see that in general, the gauge group G(M x F) is
larger than the group of inner automorphisms Inn(A). Only if U (/TJ) is equal to
Z, we have in fact Inn(A) ~ G(M x F).

In the same way as we have defined the gauge group G(M X F'), we also obtain
the groups G(M) and G(F'). For the canonical triple describing the spin manifold
M, we have seen that ./Z(J = A, which means that the group G(M) is just the trivial
group. For the finite space F', we obtain the finite or local gauge group G(F'). Let us
have a closer look at the structure of this local gauge group. We define two subsets
of AF by

Hp = U((Ap)s,), (2.11a)
br = u((Ar) ). (2.11b)

Note that the group Hp is the finite counterpart of the group U(A,) in (2.10). Let
us evaluate the structure of this group in more detail. Since (Ap), is a subalgebra
of Ap, we know that Hp is a subgroup of U(Ar), and in fact it is a Lie subgroup.
Because Hp is contained in the center of Ap (see Sec. 2.3.1), the condition uvu* = v
for v € Hp and u € U(Ap) is evidently satisfied, and hence Hp is a normal
subgroup.

The set b forms a real subspace of the real Lie algebra u(Ag). The elements of
hr are contained in the center of Ap, so all commutators vanish: [hz, u(Ag)] = {0}.
In particular, this implies that hg is a Lie algebra ideal of u(Ag). In fact, hp is the
Lie algebra of the normal subgroup Hp of U(Ap).

The local gauge group G(F) is given by the quotient U(Ap)/Hp, which consists
of the equivalence classes [u] for u € U(Ap), where [uh] = [u] for all h € Hp
determines the equivalence relation. We can write u = eX for X € u(Ar) and
h =¢eY for Y € hp. Thus we obtain an equivalence class of X € u(Ag) by elX =
[u] = [uh] = elX+Y] for all Y € hr. We then recognize that the equivalence relation
[X + Y] = [X] defines the quotient g(F') := u(Ar)/hr, so the Lie algebra of G(F)
is given by g(F').

Proposition 2.1. The gauge group G(M x F') of an almost-commutative manifold
is given by C=(M,G(F)), where G(F) = U(Ar)/HF is the local gauge group of the
finite space.
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Proof. We know that HF is a normal subgroup of U(Ap), so their quotient G(F') is
well-defined. The subgroup U(A,) equals C°°(M, Hp). We thus obtain that G(M x
F) =U(A)/U(As) = C*(M,U(Ar))/C>(M, Hr) = C*=(M,G(F)). O

Unimodularity. Suppose that A is a complex algebra. The algebra has identity
I, and by complex linearity we see that CI C (.,ZF) Jg- By restricting to unitary
elements, we then find that U(1) is a subgroup of Hp. Because Hp is commutative,
U(1) is then automatically a normal subgroup of Hp.

If, on the other hand, A is a real algebra, we can only say that RI C (VZF)JF.
By restricting to unitary (i.e. in this case orthogonal) elements, we then only obtain
that {1,—1} is a normal subgroup of Hp.

Proposition 2.2. If Ar is a complex algebra, the gauge group is isomorphic to
G(F) ~ SU(Ap)/SHF,
where we have defined SHyp = {g € Hp | det g = 1}.

Proof. An element of the quotient G(F) = U(Ar)/Hp is given by the equivalence
class [u] of some element u € U(Ap), subject to the equivalence relation [u] = [uh]
for all h € Hp. Similarly, the quotient SU(Ap)/SH g consists of the classes [v] for
v € SU(Ap) with the equivalence relation [v] = [vg] for all g € SH p. We first show
that this quotient is well-defined, i.e. that SH p is a normal subgroup of SU(AFp).
We thus need to check that vgv=! € SHp for all v € SU(Ar) and g € SHp. We
already know that vgv~! € Hp, because Hp is a normal subgroup of U(Ar). We
then also see that det(vgv~!) = detg = 1, so vgv~! € SHp, and the quotient
SU(Ar)/SH g is indeed well-defined.

There exists a A, € U(1) such that A, = det u, where N is the dimension of the
finite Hilbert space H . Since U(1) is a subgroup of U(Ar) (because we assume A
to be a complex algebra), we then see that A\, 'u € SU(Ap). We can then define
the group homomorphism ¢ : G(F) — SU(Ar)/SH r by ¢([u]) = [\~ u]. We need
to check that ¢ is well-defined, i.e. that o([u]) is independent of the choice of the
representative u € U(Ap), as well as independent of the choice of \,. Suppose we
also have X, such that X, = detu. We then must have A, "\, € uy, where uy
is the multiplicative group of the Nth roots of unity. Since U(1) is a subgroup of
Hp, we see that puy is a subgroup of SH p, so [A, ‘] = [N, 'u] and the image of
@ is indeed independent of the choice of \,. Next, for any h € Hp, we also check
that

p(lul) = ] = "M udn T ] = [(Aadn) T uh] = o([uh),

where we have used that g = A\, 'h € SHp (because U(1) is a subgroup of Hy)
and that (A, \p)N = det uh.

Since SU(Ar) C U(Ap), the homomorphism ¢ is clearly surjective. Now sup-
pose ¢([u1]) = @([ug]) for some uy,us € U(Ap). This means that \,, ‘u; =
)\uz_lugg for some g € SHp. We then obtain that u; = wush for an element
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h = Ay, 'g € Hp, 50 [u1] = [ug] and ¢ is also injective. Hence ¢ is a group
isomorphism. O

The significance of Proposition 2.2 is that, in the case of a complex algebra with
a complex representation, an equivalence class of the quotient G(F) = U(Ar)/Hp
can always be represented (though not uniquely) by an element of SU(Ap). In
that sense, all elements of G(F') naturally satisfy the unimodularity condition. In
the case of an algebra with a real representation, this is not true. For this reason
one needs to impose the unimodularity condition on the inner fluctuations in the
derivation of the standard model from noncommutative geometry (see Sec. 6.2).

Example 2.4. Let us again consider the Yang—Mills manifold M x F, of Exam-
ple 2.2. In Example 2.3 we have seen that the commutative subalgebra A is
given by C*°(M) ® Iy. The unitary elements of this subalgebra are then given
by U(Ay) ~ C>=(M,U(1)) ® Ly. Note that in this case U(A,) is equal to the sub-
group Z of U(N) that commutes with the algebra My (C). We thus obtain that the
finite gauge group is given by the quotient G(Fy,,) = U(N)/U(1) = PSU(N), which
is equal to the group of inner automorphisms of My (C). As in Proposition 2.2, this
group can also be written as SU(N)/un, where the multiplicative group uy of
Nth roots of unity is the center of SU(N). The Lie algebra g(F},,) consists of the
traceless anti-hermitian matrices su(N).

2.4.4. Full symmetry group

Suppose we have two groups N and H, and an action of H on N given by
a group homomorphism 6 : H — Aut(N). The semi-direct product N x H is
defined to be the group {(n,h)|n € N,h € H} with the product given by
(n,h)(n',h') == (n(h)n’,hh'). One may verify that this product is associative,
that the unit is given by (1,1) € N x H and that each element (n,h) € N x H
has inverse (§(h~1)(n~1), h~1). Furthermore, H is a subgroup and N is a normal
subgroup of N x H. Note that this automatically means that H is given by the
quotient (N x H)/N.

We use this semi-direct product for the description of the full symmetry group of
an almost-commutative manifold M x F. The “internal symmetries” of an almost-
commutative manifold are given by the gauge group G(M x F'). Furthermore, we
also still have invariance under the group of diffeomorphisms Diff(M). There exists
a group homomorphism 6 : Diff(M) — Aut(G(M x F)) given by

b()U :==Uog,

for ¢ € Diff(M) and U € G(M x F). Hence, we can describe the full symmetry
group by the semi-direct product G(M x F') x Diff(M).

Principal bundles. As an aside, let us now put the gauge group in the context of
principal fiber bundles (see, e.g., [56, Definition 3.2.1]). Let G be a Lie group, and
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suppose P is a principal G-bundle 7 : P — M. Let the group of automorphisms
Aut(P) be given by the diffeomorphisms f : P — P which satisfy f(pg) = f(p)g
for all p € P and g € G. Note that f induces a well-defined diffeomorphism f :
M — M given by f(n(p)) := m(f(p)). Let us consider the subgroup G(P) of Aut(P)
defined by

G(P) :={g € Aut(P)|g =Idm}.

Note that the condition g = Idy is equivalent to 7(g(p)) = w(p) for g € G(P) and
p € P. This subgroup G(P) is called the group of gauge transformations of P. We
show that it is in fact a normal subgroup. From the definition f(7(p)) := 7(f(p))
we readily see that fogo f~1 = fogof_l for f € Aut(P) and g € G(P). Since
g = Idy for g € G(P), we see that also fogo 7_1 = Idys. Hence fogo f=tis
also an element of G(P), so G(P) is indeed a normal subgroup of Aut(P). For their

quotient, we find
Aut(P)/G(P) ~ Diff(M).

Consider now the (globally trivial) principal G(F')-bundle P = M x G(F'). The
group of gauge transformations is then given by G(P) = C*°(M,G(F)), which is
precisely the gauge group G(M x F') of the AC-manifold. The full symmetry group
of an AC-manifold is thus given by

G(M x F) x Diff(M) ~ Aut(P).

This can be extended to topologically non-trivial principal bundles as was done in
[57, 58].

2.5. Inner fluctuations and gauge transformations
2.5.1. Inner fluctuations

In the previous section, we have described the gauge group for an almost-
commutative manifold. The next step towards the description of a gauge theory
is to determine the gauge fields. These gauge fields will be seen to be given by
so-called inner fluctuations. These inner fluctuations arise from considering Morita
equivalences between algebras. We will not discuss such Morita equivalences here,
but refer to [18] or [27, Chap. 1, §10.8] for more details. Instead, we will simply give
the resulting definition, which is of similar nature as the usual minimal coupling in
the physics literature.

Definition 2.6. For a real AC-manifold M x F given by the data (A, H, D, J), we
define the set

QlD = Zaj[D,bj] aj,bj eA
J
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The hermitian elements A = A* € Q}, are called the inner fluctuations of the
AC-manifold. We define the fluctuated Dirac operator by

Da:=D+ A+ JAT,
for an inner fluctuation A = A* € QL.

Note that for the canonical triple of a spin manifold M, for which A = C*°(M)
and D = ), we have by (2.1) the commutation relation

(D, f] = —iv*"(9uf) (2.12)

for all f € A. In other words, Q}Z) is given by the Clifford representation of the
1-forms A'(M). The elements of Q}, for a general Dirac operator D are therefore
regarded as a generalization of 1-forms. They will be interpreted as gauge potentials
or gauge fields.

We take a,b € C°°(M) and calculate elements of the form A = a[ID, b]. By using
the local formula P = —iv“Vﬁ we find the inner fluctuation

A= —iytad,b=:~y"A,.

Since A must be hermitian, A, = —iad,b must be a real function in C°°(M). Since
Jy commutes with 1) = —iw“Vﬁ and anticommutes with 7, we know that Jy; must
anticommute with v*. Furthermore, Jj; commutes with A, since A, is real. Hence
we conclude

Da=D+A+IuATiy =D +A— ATy = D.

So, for the canonical triple of a spin manifold M there are no fluctuations of the
Dirac operator I§, and hence there is no gauge field (see also [32]).

Let us now calculate the inner fluctuations for a general AC-manifold M x F.
The Dirac operator D = ) ® [ + 5 ® D consists of two terms, and hence we can
also split the inner fluctuation A = a[D,b] in two terms. The first term is given by

alp @L,b] = —in" ® ad,b =1 y" ® Ay, (2.13)
where A, := —iad,b € iA must be hermitian. The second term yields
alys ® Dp,b] = v5 @ a[Dp,b] =: 75 @ ¢, (2.14)
for hermitian ¢ := a[Dp,b]. Thus, the inner fluctuations of an even almost-
commutative manifold M x F take the form
A=y" @A, +7 @ ¢, (2.15)

for hermitian operators® A, € iA and ¢ € T'(End(FE)), where E is the trivial bundle
E = M x Hp. In the context of the Standard Model (Sec. 6.2 below), we will see
that the field ¢ describes the Higgs field, explaining the notation.

PNote that i.4 = A for complex algebras only.
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The fluctuated Dirac operator is given by Dy = D + A + JAJ*. We then
calculate

WA+ IV AT =" (Ay — JrALTp) = 7" @ By, (2.16)

where we have defined B, € I'(End(E)). We define the twisted connection V¥ on
the bundle S ® F by

E _ oS ;
VE =V @I+il® B,

We then see that we can rewrite ) @ I+~# ® B, = —iy*VE. For the remainder of
the fluctuated Dirac operator, we define ® € I'(End(F)) such that

Y5 @ Dp 475 @ ¢+ J(75 @ §)J* =175 @ D. (2.17)
The fluctuated Dirac operator of a real even AC-manifold then takes the form
Dy=DRI+" @B, +75®®=—iy"V} + 75 @ ®. (2.18)

In Sec. 2.4.3, we have obtained the local gauge group G(F') with Lie algebra
g(F). For consistency we should now check that the gauge field A, arising from the
inner fluctuation indeed corresponds to this same gauge group.

The demand that A, is hermitian is equivalent to (i4,)" = —iA,. Since A, is
of the form —iad,b for a,b € A (see (2.13)), we see that ¢4, is an element of the
algebra A (also if A is only a real algebra). Thus by (2.7), we have A, (z) € iu(Ar).

The only way in which A, affects the results is through the action of A, —
JrAuJp. 1f we take A = A, — a, for some a, € ihp = iu((Ar) ) (which
commutes with Jg), we see that A; — JFALJ} = A, —JrpA,J}. Therefore we can,
without any loss of generality, assume that A,(z) is an element of the quotient
ig(F) = i(u(Ar)/br)). Since g(F) is the Lie algebra of the gauge group G(F), we
have confirmed that

A, € C™(M,ig(F)) (2.19)
is indeed a gauge field for the local gauge group G(F'). For the field B,, found in
(2.18), we can also write B,, = ad(A,), where ad has been defined in (2.8). So, we
conclude that B, is given by the adjoint action of a gauge field A, for the gauge
group G(F') with Lie algebra g(F).

If the finite space F' has a grading vg, the field ¢ satisfies ¢yp = —yp¢ and the
field ® satisfies Pyp = —yp® and ®Jp = Jp®. These relations follow directly from
the definitions of ¢ and ® and the commutation relations for Dp.

Using the cyclic property of the trace, it is easy to see that the traces of the

fields B,,, ¢ and ® over the finite Hilbert space Hr vanish identically. For B, we
find

Try (Bu) = Trye (Ap — JrApJp) = Try (A — ApJpJr) = 0.
For the field ¢, we find
Try,(¢) = Trye (a[Dr, b)) = Tra, ([b, a] D).
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Using the fact that the grading commutes with the algebra and anticommutes with
the Dirac operator, one can show that this trace also vanishes. It then automatically
follows that ® = D + ¢ + Jp@Jy is also traceless.

Example 2.5. For the Yang—Mills manifold of Example 2.2, the inner fluctua-
tions take the form A = 4* ® A, for a traceless hermitian field 4, = A} €
C>®(M,isu(N)). Since JpA,Jipm = mA, for m € My(C), we see that for the
field B, = A, — JrA,J} we obtain the action B,m = A,m —mA, = [A,,m] =
(ad A, )m. Thus A, is a PSU(N) gauge field which acts by the adjoint representa-
tion on the fermions in L?(M,S) @ Mx(C).

2.5.2. Gauge transformations
In Sec. 2.4.3, we have seen that an element U € G(M x F') transforms the Dirac
operator as D — UDU™. Let us now consider the effect of this transformation on
the fluctuated Dirac operator D4 = D+ A+ ¢ JAJ*. Using the commutation rules
[a,°] = 0, [[D,a],b°] = 0 and JD = €' DJ, we calculate that
UDU* = uJuJ*DJu*J*u* = €uJuDu*J*u* = € uJ(D + u[D,u*])J u*
=uDu* + € JJ uJu[D,u*]J*u* = D + u[D,u*] + € Ju[D,u*]J*.
Because of the commutation rules (2.4) and (2.6), we immediately find [4, JaJ*] =
0, so we see that
UAU* = uJuJ AJu* J*u* = uAu*
and
U JAT'U* = uJuJ* JAT  Ju* J*u* = uJuAu* J*u*JJ*
= duJJ v JuAu*J* = ¢ JuAu*J*.
Combining these three relations, we find that
UDAU" = Dyu, for A" := uAu™ + u[D,u"]. (2.20)

Thus, the transformed operator UD 4U* can also be written as a fluctuated Dirac
operator D gu, for a new fluctuation A*. This only works because we consider the
unitary transformation U = wJuJ* given by the adjoint action of u € U(A),
to make sure that the conjugation operator J remains unchanged. The resulting
transformation on the inner fluctuation A — A“ shall be interpreted in physics as
the gauge transformation of the gauge field.

Note that for an element U = uJuJ* in the gauge group G(M x F), there is
an ambivalence in the corresponding transformation of A. Namely, for u € U(A)
and h € U(.,ZJ), we can also write U = uhJuhJ*. By replacing u with uh we then
obtain, using (2.4) and (2.6), that

A" =y Au* + u[D,u*] + h[D, h].
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However, when considering the total inner fluctuation A" + JA"M J* | the extra
term h[D, h*] will be cancelled:

h[D,h*] + Jh[D,h*|.J* = h[D,h*] + h*[D, h].JJ* = [D, hh*] = 0.

Hence the transformation of Dy = D + A + JAJ" is well-defined.

For an AC-manifold M x F, we can write A = v"* ® A, + 75 ® ¢ (by (2.15))
and D = —i’y”Vﬁ ®@ 1+ v5 ® Dp, and by using that [Vﬁ,u*] = Jyu*, we thus
obtain

A, — uAu” —iud,u’,
! ! ! (2.21)
¢ — upu* + u[Dp,u"].
Let us rewrite the hermitian field A, as the anti-hermitian field w, = i4, €
C>(M,g(F)). The above transformation property of the field A, then corre-
sponds to

wy — uwpu” + udut. (2.22)

This is precisely the gauge transformation for a gauge field w,, as desired.

However, the transformation property of the field ¢ is more surprising. In the
usual setup in physics, a Higgs field transforms linearly under the gauge group.
The transformation for ¢ derived above on the other hand is nonlinear. From the
framework of noncommutative geometry this is no surprise, since both bosonic fields
A, and ¢ are obtained from the inner fluctuations of the Dirac operator, and are
thereby expected to transform in a similar manner. It might be though that for
particular choices of the finite space F', the transformation property of ¢ reduces
to a linear transformation. An example of this will be discussed in Sec. 5, where
we derive the electroweak sector of the Standard Model as an almost-commutative
manifold.

2.6. The action functional

We shall now continue to introduce interesting functionals on AC-manifolds, that
are invariant under the action of unitary elements of the algebra.
For an AC-manifold M x F given by the data (A, H, D), we define the spectral

action as [19, 20]
s (7(20)) o

where f is a positive even function, A is a cut-off parameter and D 4 is the fluctuated
Dirac operator. The function f may be considered as a smooth approximation of a
cut-off function and as such counts the number of eigenvalues of D 4 smaller than
A. However, such a restriction is not necessary and we will not do so.

The spectral action accounts only for the purely bosonic part of the action. For
the terms involving fermions and their coupling to the bosons, we need something
else. The precise form of the fermionic action depends on the KO-dimension of
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the AC-manifold. We will only consider the case of KO-dimension 2 and give the
fermionic action for this case. Referring to the sign table of Definition 2.3, we thus
have the relations

J*=-1, JD=DJ, Jy=-—~lJ (2.24)

We use the decomposition H = HT & H~ by the grading ~. Following [10] (cf.
[27, Chap. 1, §16.2-3]), the relations above yield a natural construction of an
antisymmetric form on H™*, namely, we define

Ap(&,¢') = (I, DE)

for £,& € HT, where (,) is the inner product on H. This inner product is antilinear
in the first variable, and since J is also antilinear, 2 is a bilinear form. We check
that it is antisymmetric:

Ap (&, &) = —(J¢, 2Dy = —(IDE,€)
= _<D‘]£I’§> = _<']§/an> = _QlD(g/:f)a

where we have used the relations of (2.24) and the fact that J is antiunitary, i.e.
(JE, JEY = (¢,¢) for all £, &' € H. Furthermore, we can restrict Ap to HT without
automatically getting zero, since we have vJD = JD~. For ¢ = 4£,& = ~v¢' € HT,
we have

(JE,DE") = (JvE, D'y = —(vJE, DE') = —(JE,vDE')
= (J§, D) = (J¢, DE).
We define the set of classical fermions corresponding to H™,
My ={E16eHty,
as the set of Grassmann variables E for € € HT.

Definition 2.7. For a real even AC-manifold M x F of KO-dimension 2 we define
the full action functional by

S =5, +Sf = Tr(f(%)) + %(Jg,DAS»

for £ € HZ. The factor £ in front of the fermionic action Sy has been chosen for
future convenience.

Remark 2.3. The above formulas for the bosonic and fermionic action look rather
different for both cases. A more symmetrically looking proposal was put forward
recently in [59].

One should note that we have incorporated two restrictions in the fermionic
action Sy. The first is that we restrict ourselves to even vectors in H™, instead of
considering all vectors in H. The second restriction is that we do not consider the
inner product (J E’ , D A§ ) for two independent vectors  and &', but instead use the
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same vector £ on both sides of the inner product. Each of these restrictions reduces
the number of degrees of freedom in the fermionic action by a factor 2, yielding a
factor 4 in total. It is precisely this approach that solves the problem of fermion
doubling pointed out in [60] (see also the discussion in [27, Chap. 1, §16.3]). We
shall discuss this in more detail in Sec. 4, where we calculate the fermionic action
for electrodynamics.

2.6.1. Invariance of the action functional

Above we have defined the action functional S; + Sy for an AC-manifold M x F,
and of course we want this action to be invariant under the gauge group G(M x F).
Therefore, let us now check that both the bosonic action S, and the fermionic action
Sy are indeed invariant functionals, and can thus suitably be used in the description
of a gauge theory.

Let us first consider the spectral action Sp. The transformation of the fluctuated
Dirac operator is given by Dy — UD A U* for U € G(M x F), so the spectral action

transforms as
HUCYIELUCS )

The trace depends only on the discrete spectrum of the fluctuated Dirac operator
D 4. The unitary transformation has no effect on this spectrum. Namely, if we let
1, be the eigenvectors of D4 with eigenvalues )\, then the vectors ¢!, := U1, are
the eigenvectors of D', := UD 4U* with the same eigenvalues \,:

For the spectral action, we thus obtain

((5))-E(3) ()

Next, consider the fermionic action Sy. The transformation of the fluctuated
Dirac operator is given by D4 — UDU* for U € G(M x F'), whereas the conju-
gation operator remains unchanged since UJU* = J. From the unitarity of U we
then easily see that

(JE,DAE) — (JUE, UDAUUE) = (UJE, UD 4E) = (JE, D 4E).

So, we have confirmed that the total action functional Sy, 4 S is indeed invariant
under the gauge group G(M x F).

2.7. Gauge theories from almost-commutative manifolds

In this section, we have used the data (A, H,D,v,J) describing an almost-
commutative manifold M x F to describe a gauge group, gauge fields, gauge
transformations as well as invariant action functionals. These results can now be
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summarized as follows:

Theorem 2.1. A real even almost-commutative manifold M x F' describes a gauge
theory on M with gauge group G(M x F) = C*>°(M,G(F)).

Proof. In (2.19), we have obtained that iA,(z) € g(F) = u(Ar)/br. The total
algebra is given by A = C*(M, Ar), and this is by construction the space of
smooth sections of the trivial bundle M x Ap. Therefore the gauge field A, defines
a global smooth g(F)-valued 1-form w = ¢A,dx". Consider the trivial principal
bundle P = M x G(F). Because of the transformation property (2.22), we see that
w is a connection form on P.

The group of gauge transformations for a trivial principal fiber bundle P =
M x G(F) is given by C*°(M,G(F)), and by Proposition 2.1 this group is equal to
G(M x F). This means that the gauge group of this principal bundle P is identical to
the gauge group of the almost-commutative manifold, as defined in Definition 2.5.
We have seen in Sec. 2.6.1 that the total Lagrangian we obtain from the bosonic
and fermionic action functionals is invariant under this gauge group.

Since the representation of Ar on Hp induces a representation of G(F) on
Hp, we see that M x Hp is an associated vector bundle of the principal bundle
P = M x G(F). We have thus seen that, from an almost-commutative manifold, we
can recover all the ingredients of a gauge theory. |

In the above theorem, we have used the gauge field A4, to construct a connection
on a (trivial) principal G(F)-bundle P = M X G(F'). We have seen that E = M X Hp
is an associated vector bundle of P, and this provides an action of the gauge group
on the fermionic particle fields. One should note however that the total Hilbert
space of an AC-manifold is given by H = L*(M,S) @ Hr = L?*(M,S ® E), so the
particle fields on an AC-manifold are sections of the total bundle S ® E, and this
total bundle is not an associated vector bundle of P.

3. The Spectral Action on AC-Manifolds

In this section we shall derive, from the spectral action of (2.23), an explicit formula
for the bosonic Lagrangian of an almost-commutative manifold M x F'. We will start
by calculating a generalized Lichnerowicz formula for the square of the fluctuated
Dirac operator. Then, we will show how we can use this formula to obtain the heat
expansion of the spectral action. We will explicitly calculate this heat expansion,
allowing for a derivation of the general form of the Lagrangian for an almost-
commutative manifold.

3.1. The heat expansion of the spectral action
3.1.1. A generalized Lichnerowicz formula

Suppose we have a vector bundle £ — M. An important example of a second order
differential operator is the Laplacian A¥ of a connection V¥ on E. We say that a
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second order differential operator H is a generalized Laplacian if it is of the form
H =AF — F for some F € I'(End(E)). For more details on generalized Laplacians
we refer the reader to [61, §2.1].

We can then define a (generalized) Dirac operator on a Zq-graded vector bundle
E as a first order differential operator on E of odd parity, i.e. D : I'(M, E*) —
(M, E¥), such that D? is a generalized Laplacian (see [61, Sec. 3.3]).

Our first task is to show that the fluctuated Dirac operator D4 of an almost-
commutative manifold, is indeed a (generalized) Dirac operator. In other words, we
would like to show that D42 can be written in the form AF — F. Before we prove
this, let us first have a closer look at some explicit formulas for the fluctuated Dirac
operator. Recall from (2.18) that we can write

Dy= —W“Vf +95 ®@ P,

for the connection Vf = Vﬁ @I+ ® B, on S®E and for the Higgs field
¢ € I'(End(E)). Let us evaluate the relations between the connection, its curvature
and their adjoint actions. We define the operator D,, as the adjoint action of the
connection V%, i.e. D), = ad(V}). In other words, we have

D,® = [V}, ®] = 9,® +i[B,, ®]. (3.1)
We shall define the curvature F,, of the gauge field B,, by
F = 0,B, — 0,B, +i[B,, B,]. (3.2)
The curvature of the connection V¥ is defined as
OF(X,Y) = VEVY - VEVE = Viky (3.3)
for two vector fields X, Y. Since in local coordinates we have [0,,,0,] = 0, we find
E _ vEwE EvE
Q. =V, V, =V, V,
= (Vi ®I+il® B,) (V) ®1+il® B,)
— (VS ®@1+4®B,)(V; @ 1+41® B,)
=08, ®1+il®0,B, —il®0,B, —1® [B,, B,].
By inserting (3.2), we obtain the formula
O, =V, V)] =, @1+il® F,,. (3.4)

Next, let us have a look at the commutator [D,, D,]. By using the definition of
D,, and the Jacobi identity, we obtain

[Dy, D,]® = ad(V}}) ad(V])® — ad(V]) ad(V},)®
= [v57 [va (I)]] - [Vf7 [va (I)]]
=[[Vy, Vi1 @] = [, @] = ad(Q;, ).

wv?
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Since Qﬁ,, commutes with ®, we obtain the relation
[Dy,D,] =tad(F,.).

Note that this relation simply reflects the fact that ad is a Lie algebra
homomorphism.

In local coordinates, the Laplacian is given by A¥ = —g(VEVE —T* VT,
We can then calculate the explicit formula

AP = —gi(VivE -17,, VD)
=AS@I—g"(i(Vi ®)(I® B,)
+i(l® B,)(Vy ®1) —1® B,B, —il*,, ® B))
=AY ®I-2i(1® B*)(V; ®1)
—ig"(I®9,B,) +1® B,B" +ig"'T* ,, @ B,. (3.5)

We are now ready to prove that the fluctuated Dirac operator D 4 of an almost-
commutative manifold satisfies the following generalized Lichnerowicz formula or
Weitzenbick formula. First, for the canonical Dirac operator ) on a compact Rie-
mannian spin manifold M we have the Lichnerowicz formula (see, for instance,
[33, Theorem 9.16])

D’ =AS ¢ is (3.6)

where A® is the Laplacian of the spin connection V°, and s is the scalar curvature
of M.

Proposition 3.1. The square of the fluctuated Dirac operator of an almost-
commutative manifold is a generalized Laplacian of the form

DA% =AF — Q.
The endomorphism @ is given by
1 1
Q=—7s01-10 0%+ Jiy"y" ® Fuy — "9 @ D@,

where D, and F,,, are defined in (3.1) and (3.2).

Proof. Rewriting the formula for D4, we have
DA’ = (D RT+~"® B, + 75 ® ®)?
— P’ @1++"7" ® B,B, +10 & + (Py* @ T)(1@ B,)
+T©B )P+ (P RD)(1: 0 )+ (15 © ) (P 1)
+ (Y @ B,) (15 © @) + (15 ® ®) (7" @ B).
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For the first term we use the Lichnerowicz formula of (3.6). We rewrite the second
term into

v 1 v
Y ® BB, = 57“7 ® (BuBl/ + B,B,, + [BuaBu])

1
=1® B,B* + 57“7” ® [By, Bul,

where we have used the Clifford relation to obtain the second equality. For the
fourth and fifth terms we use the local formula ) = —i7”V? to obtain

(P @D)(I @ By) + (1@ B,) (" P eI)
= —(iy" V" @ DI ® By) — (1® B,)(y"iy"V, @ I).

Using the identity [V, c(a)] = ¢(V,a) for the spin connection, we find [V ® I,
(v @I)(I® B,)] = c¢(V,(0* ® B,)). We thus obtain

(P @D)(I® By) + (1@ B,) (" P eI)
=—i(v" @D)c(V, (6" ® By))
—i(y"y* @I ® Bu)(Vy @ 1) —i(l® B,)(v*+"Vy @)
= —i(v" @ D)e(0" ® (0,B,) —T7,,0" ® B,) — 2i(1® B")(Vy @ 1)
=—i(v"y* o)1 ®d,B, —T?,,® B,) — 2i(1® B")(V; &1
=—i(y"" @)1 ®d,B,) +ig"T”’,, ® B, —2i(l® B")(V) ®1).
The sixth and seventh terms are rewritten into
(DeD(y @)+ (10 2) (D I)
=-(3eDPLI® P = (v @iy ® 9,2) = i157" ® 9.2
The eighth and ninth terms are rewritten as
(7" ® Bu) (75 ® @) + (15 ® @) (7" ® By) = 757" ® [By, @).

Summing all these terms then yields the formula

1 1
DA% = (AS"'ZS) ®H+(H®Bu3“)+EW“W'/@[BM’B”]""H@@

—i(yy" ® A ® 9,By) +ig"'T*,, ® B, — 2i(1® B")(V; ®1)
+i757" ® 0,® — 7" @ [By, .
Inserting the formula for A obtained in (3.5) we obtain
1 1
DA* = A" 4 2s® 1+ 299" @ (B, B +10 ¢ —i(y'y* @ (I © 9, B,)
+ig" (1 ® 0,By) + i7" ® 0,P — vs7" @ By, ®.
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Using (3.2), we shall rewrite
—i(y"" @I ® 9, By) +ig"" (1® 0,By)
N v 1 N v v
=—i(y"7" eI 81/Bu) =+ 5“7”7 + 9" ® (8pBu)
L. 5% L. o B
=—5" ® (0,By) + 31" ® (0,By)

1. y 1 y
= _§Z’YM'Y ® Fu — 5'7“'7 ® [BAHBV]'

Using (3.1), we thus finally obtain
2 B, L LN S :
Dy =A +ZS®H+H®(I) —y’y“’y ® Fuy + iy @ D, ®,

from which we can read off the formula for Q). O

3.1.2. The heat expansion

Below we present two important theorems (without proof) which we will need to
calculate the spectral action of almost-commutative manifolds. The first of these
theorems states that there exists a heat expansion for a generalized Laplacian.
The second theorem gives explicit formulas for the first three non-zero coeffi-
cients of this expansion. Next, we will show how these theorems can be applied to
obtain a perturbative expansion of the spectral action for an almost-commutative
manifold.

Theorem 3.1 ([62, §1.7]). For a generalized Laplacian H on E we have the
following expansion in t, known as the heat expansion:

Te(e ) ~ St an(H), (3.7)
k>0

where n is the dimension of the manifold, the trace is taken over the Hilbert space
L?(M, E) and the coefficients of the expansion are given by

ax(H) = /M o, H)y/Jgld . (3.8)

The coefficients ay(x, H) are called the Seeley—DeWilt coefficients.

For a more physicist friendly approach, we refer to [21]. We also state here
without proof Theorem 4.8.16 from Gilkey [62]. Note that the conventions used by
Gilkey for the Riemannian curvature R are such that g*”¢"? R, - is negative for
a sphere, in contrast to our own conventions. Therefore we have replaced s = —R.
Furthermore, we have used that f, # = —Af for f € C°°(M).
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Theorem 3.2 ([62, Theorem 4.8.16]). For a generalized Laplacian H = AF —F
the Seeley—DeWitt coefficients are given by

ao(x, H) = (47) "2 Tr(Id), az(z, H) = (477)—%Tr<g —|—F>,

a1
as(z, H) = (47)" % 3603(—1%3 + 55 — 2R, R™ + 2R, 0 RMP7

+60sF + 180F” — 60AF + 3092, (7)),

where the traces are now taken over the fiber E,. Here s is the scalar curvature of
the Levi-Civita connection V, A is the scalar Laplacian and QF is the curvature of
the connection VE corresponding to A¥. All ay(x, H) with odd k vanish.

We have seen in Proposition 3.1 that the square of the fluctuated Dirac opera-
tor of an almost-commutative manifold is a generalized Laplacian. Applying The-
orem 3.1 on D4? then yields the heat expansion:

Te(e™P4%) ~ N 177 ap(Da?), (3.9)
k>0
where the Seeley-DeWitt coefficients are given by Theorem 3.2. In the following
proposition, we use this heat expansion for D42 to obtain an expansion of the
spectral action.

Proposition 3.2. For an almost-commutative manifold, the spectral action given
by (2.23) can be expanded in powers of A in the form

Tr (f(%)) ~ as(D4®)f(0)

+2 ) f4kA4kak(DA2)@+O(Al), (3.10)

2
where f; = fooc f()v'~tdv are the moments of the function f for j > 0.

0<k<4
k even

Proof. This proof is partly based on [27, Theorem 1.145]. Consider a function g(u)
and its Laplace transform

g(v) = /OC e *“h(s)ds.
We can then formally write ’
g(tDA?) = /0oc eiStDAQh(s)ds.
We now take the trace and use the heat expansion of D42 to obtain

Tr(g(tDA?%)) = /0oc Tr(eiStDA2)h(s)ds ~ /0OC Z(st)k_;lak(DAQ)h(s)ds

k>0

:Ztkﬁ;‘kak(DAQ)/ s#h(s)ds.
0

k>0
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The parameter t is considered to be a small expansion parameter. From here, on
we will therefore drop the terms with k > 4. The term with & = 4 equals

as(DA?) /000 s°h(s)ds = as(D4%)g(0).

We can rewrite the terms with & < 4 using the definition of the I'-function as the
analytic continuation of

I'(z) = /000 r* e " dr (3.11)

for z € C, and by inserting r = sv, we see that (for k < 4)

4k oo i e [ 4
F(—) :/ (sv)%*le*”d(sv) = s%/ v T ey,
2 0 0

From this we obtain an expression for 313;4, which we insert into the equation for
Tr(g(tD4?%)), and then we perform the integration over s to obtain

Tr(g(tDa?)) ~ as(DA?)[(0) + Y +°7 ar(Da?)
0<k<4

x;/ v g()dv + O(AY).
2

Now we choose the function g such that g(u?) = f(u). We rewrite the integration
over v by substituting v = u? and obtain

/000 v%kflg(v)dv = /000 u R 2g(u?)d(u?) = 2/OC u*F L f (u)du,

0

which by definition equals 2f; . Upon writing t = A~2? we have modulo A~
D
w(1(5)) = mlota 20

~as(Da*)f(0)+2 ) f4—kA4_kak(DA2)ﬂ-
0<k<4 F(T)

Using ax(D4”) = 0 for odd k, the proof follows. m|

3.2. The spectral action of almost-commutative manifolds

In the previous section, we have obtained a perturbative expansion of the spectral
action for an almost-commutative manifold. We will now explicitly calculate the
coefficients in this expansion, first for the canonical triple (yielding the Einstein—
Hilbert action of General Relativity) and then for a general almost-commutative
manifold.
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By Proposition 3.2 we have

TY(f(%)) ~ 2fsh ag(D4a”) + 2foA%a(Da?)

+ f(0)ag(D4%) + O(A7Y). (3.12)
Recall the Lichnerowicz formula from (3.6), which says P =AS+ 1s, where A
is the Laplacian of the spin connection V°, and s is the scalar curvature of the

Levi—Civita connection. Using this formula, we can calculate the Seeley—DeWitt
coefficients from Theorem 3.2.

Proposition 3.3. For the canonical triple (C>°(M),L*(M,S), D), the spectral
action is given by:

D _
w(#(3))~ [ etau)Vilds +om . (3.13)
where the Lagrangian is defined by

fiA* foA? f0) /1 1 11
L v) = - —~As — —C, v Uc,uupa —R'R* ).
m(gu) =5 5 = 5t e\ 3920 gpCme * 360

m
2

Proof. We have m = dim M = 4, and Tr(Id) = dim S = 2
into Theorem 3.2 gives

= 4. Inserting this

ag(lﬁ) = % /M \/Ed4x.

From the Lichnerowicz formula we see that F = —%s 1d, so
as(P%) = L / sv/|gld*x.
487T2 M
Using F = —%sld we calculate

5
55%1d + 60sF + 180F? = 152‘1(1.
Inserting this into as(IP”) gives

a4(m2) 1 1

5
=——— | Tr(3AsId+ =s’1d — 2R,,, R*1d
1672 360 /M r<3 ey By

+ 2R, p0 RMP71d + 309395’”) Vgldiz.

The curvature Q° of the spin connection is defined as in (3.3), and its compo-
nents are Qﬁu = 0%(9,,0,). The spin curvature Q7 is related to the Riemannian
curvature tensor by (see, for instance, [33, p. 395])

1 o
Qﬁu = ZR,prU’YP’Y . (314)
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We use this and the trace identity Tr(y#y"~vP~7) = 4(g"" g*7 — g"*Pg"7 + g"? g**) to
calculate the last term of a4(lﬁ2):

v 1 v (o K
Tr(Q, Q") = 16 Bwrno B 3 T (7777 79")
1 v loa K OK K O
= Rues B3, (97797 = 97297 + 9™97%)
1 vpo
= _§Ruup0'RM o ) (315)

where on the second line because of the antisymmetry of R, in p and o, the first
term vanishes and the other two terms contribute equally. We thus obtain

9 1 1
() = {535

X / (12As + 55 — 8R,, R*™ — TR pe R*P7)\/|g|d*z.  (3.16)
M

We shall rewrite this into a more convenient form. First, let us consider the Weyl
tensor C),, )0, which is the traceless part of the Riemann tensor. The square of the
Weyl tensor can be written as

1
Cﬂupgcﬂupd — R,LLVpUR#VpG _ QRVURUO' 4 532' (317)
Next, we shall also consider the Pontryagin class R*R* given by
R'R* = s* — AR, R" + Ry po R*P°. (3.18)
Using (3.17) and (3.18) we calculate:
1 11 1 1 1
o nvpo T opEp* Qv po - ve _ _— .2
g0 Crmor O g I = =g i R+ 5 e B2 =58
11 44 11
_RUO_R/.LUPO'__RUO_RI/O' T2
T 360" 360 " 360°
1

= 350 (" Rupo R7 = 8RR + 5s2).

Therefore we can rewrite (3.16) and obtain
2 1 1 1 11 .
=— —As — —C,oC*"P? + —R*R* | /|g|d*z.
) = 5 /M<30 TN " 360 ) lgld"

Inserting the obtained formulas for ag(°), az(IP”) and as(P°) into (3.12) proves
the proposition. O

Remark 3.1. In general, an expression of the form as?+bR,,R" + Ry po RIVPY,
for constants a, b, c € R, can always be rewritten in the form as® + BC iy ps CHP7 4
yR*R*, for new constants a, 3,7 € R. One should note here that the term s? is not
present in the spectral action of the canonical triple, as calculated in Proposition 3.3.
The only higher-order gravitational term that arises is the conformal gravity term
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ClvpsCHP? . This feature of the spectral action will later allow us in Sec. 7.3 to
derive the conformal symmetry of the spectral action.
Note that alternatively, using only (3.18), we could also have written

2 11 v _ T opape ) T
as(P7) = 16?%/M <A3+ s* — 3R, R" — ER R ) lgld*z.

The integral over As only yields a boundary term, so if the manifold M is com-
pact without boundary, we can discard the term with As. Furthermore, for a
four-dimensional compact orientable manifold M without boundary, we have the
formula

/ R*'R*v, = 87*x(M),
M

where x (M) is Euler’s characteristic. Hence the term with R*R* only yields a topo-
logical contribution, which we will also disregard. From here on, we will therefore
consider the Lagrangian

_ f4A4 f2A2 f(O) uvpo
Eatlgm) = 57 = 54m® ~ 33052 G © (3.19)
or
_ it foA? f0) - "
Laa(guw) = 55 = 555+ 150, (s* = 3R, R"™). (3.20)

Proposition 3.4. The spectral action of the fluctuated Dirac operator of an almost-
commutative manifold is given by

Tr(f(%)) N/ L(gyus By ®)y/gld*z + O(A),
M
for
£(9W7 By, P) = NﬁM(gw) + ‘CB(BM) + EH(QW? By, D).

Here Lar(guw) is defined in Proposition 3.3, and N is the dimension of the finite
Hilbert space Hp. Lp gives the kinetic term of the gauge field and equals

Lp(B,) = 54(7(2 Tr(F,, F*).

Ly gives the Higgs Lagrangian including its interactions plus a boundary term
given by

2foA2
472

f0)
4872

Tr(®?) + %Tr(qf*) + %A(Tr(qﬂ))

L (9w, Bu, ®) = —

+ sTr(®?) + %n((pﬂ@)(pw)). (3.21)

Proof. The proof is very similar to Proposition 3.3, but we now use the formula
for D 4? given by Proposition 3.1. The trace over the Hilbert space Hp yields an
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overall factor N := Tr(I3,), so we have
2
ao(DA2) = Nao(lD )

The square of the Dirac operator now contains three extra terms. The trace of
~vH 5 vanishes, since the trace of a product of any odd number of gamma matrices
vanishes. Since Tr(y*y") = 4g"” and F),, is anti-symmetric, the trace of v#~"F},,
also vanishes. Thus we find that

as(D4?) = Nay(D?) — 4%/ Tr(®%)/]g|d*z.
™ JMm

Furthermore we obtain several new terms from the formula for as(D4?). First we
calculate

1 1 \
%Tr(GOsF) = 6s(Ns+4Tr(<I> ))-

The next contribution arises from the trace over F2, which (ignoring traceless terms)
equals

1 1Ly
F? = Eﬁ QI+Id*— nyw Y @ Fuu Foy

1
+9"v" @ (D, ®)(D,®) + 28 ® ®? + traceless terms.
Taking the trace then yields

1 N
%T&"(180F2) — §32 + 2Tr(®*) + Tr(E,, F*)

+2Tr((D,®)(D"®)) + sTr(®?).

Another contribution arises from —AF. Again we can simply ignore the traceless
terms and obtain

1 1 )
g TH(-60AF) = SA(Ns +4Tr(2?).

The final contribution comes from the term QEVQE " where the curvature QF is
given by (3.4). We have

Q0" =03 05" @1 -1® F,, F" + 2iQ, @ F™.
Using (3.14), we find

1 1
TI'(QSU) = ZRPUW,TI(’YP’YU) = ZRpo’;U/ng =0

by the anti-symmetry of R,s.., so the trace over the cross-terms in QEVQE "
vanishes. From (3.15) we then obtain

1 v, 1 ( N
%Tr(ZiOQfVQE“ =15 (—ERWPUR””P" — 4Tr(FWFW)>.
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Gathering all terms, we obtain

11
(47)2 360

+8NR 1 po R*P7 — 60s(N's + 4Tr (%))

ay(z, DAQ) = (—48NA5 +20Ns? — 8NR,, R"

N
+ 360 <§32 + 2Tr(®*) + Tr(F,, F™)

+2Tr((D,®)(D"®)) + sTr(<I>2)>

N
+60A(Ns + 4Tr(®%)) — 30 (53#%03#"%’“ + 4Tr(FWF#")> )

— LL 2 _ uy uvpo
= G 250 (12N As +5Ns = 8NRy, R = TNRyypo R
+120sTr(®?) + 360(2Tr(®*) 4 2Tr((D, @) (D" ®)))
+ 240A(Tr(9?)) + 240Tr(F,, F*)).

By comparing the first line of the second equality to (3.16), we see that we can
write

1 1
—sTr(®?) + 5Tr(<1>4)

ag(z, D% = Na4(ac,lﬁ2) + 1 <12

472
1 1 9 1 y
Inserting these Seeley—DeWitt coefficients into (3.12) proves the proposition. O

Example 3.1. Let us return to the Yang—Mills manifold M x F\,, of Example 2.2.
We have already seen in Example 2.5 that we have a PSU(N) gauge field A,,, which
acts by the adjoint representation B, = ad A, on the fermions. There is no Higgs
field ¢, so ® = Dp = 0. We can insert these fields into the result of Proposition 3.4.
The dimension of the Hilbert space Hp = My(C) is N2. We then find that the
Lagrangian of the Yang—Mills manifold is given by

f(0)

A2
E(guw Bu) =N ﬁM(gw) + By

Ly (By)
Here Ly, is the Yang—Mills Lagrangian given by
Ly (By,) == Tr(F,, F*),

where F),,, denotes the curvature of B,,. This was first derived in [19, 20].

4. Electrodynamics

In the previous sections, we have described the general framework for the description
of gauge theories on almost-commutative manifolds. The present section serves
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two purposes. First, we describe abelian gauge theories within the framework of
noncommutative geometry, which for long was thought impossible. In [32, Chap. 9],
a proof is given for the claim that the inner fluctuation A + JAJ™ vanishes for
commutative algebras. The proof is based on the claim that the left and right
action can be identified, i.e. a = a, for a commutative algebra. Though this claim
holds in the case of the canonical triple describing a spin manifold, it need not be
true for arbitrary commutative algebras. The almost-commutative manifold given
in Sec. 4.1 provides a counter-example.

What can be said for a commutative algebra, is that there exist no non-trivial
inner automorphisms. It is thus an important insight here that the gauge group
G(A), as defined in Definition 2.5, is larger than the group of inner automorphisms,
so that a commutative algebra may still lead to a non-trivial gauge group. In fact,
we will show that our example given below describes an abelian U (1) gauge theory.

Second, in Sec. 4.2 we will show how this example can be modified to provide a
description of one of the simplest examples of a gauge field theory in physics, namely
electrodynamics. Because of its simplicity, it helps in gaining an understanding of
the formulation of gauge theories in terms of almost-commutative manifolds, and it
provides a first stepping stone towards the derivation of the Standard Model from
noncommutative geometry in Sec. 6.

4.1. The two-point space
4.1.1. A two-point space

In this section we will discuss one of the simplest possible spaces, namely the two-
point space X = {x,y}. A complex function on this space is simply determined by
two complex numbers. The algebra of functions on X is then given by C'(X) = C2.
Let us construct an even finite space F', corresponding to the two-point space X,
given by (see Sec. 2.2)

Fy = (C(X),"Hp, Drp,F).
We require that the action of C'(X) on the finite-dimensional Hilbert space Hp is
faithful, which implies that Hpr must be at least two-dimensional. For now we will
restrict ourselves to the simplest case, and thus we will take Hpr = C2. We use the
Zs-grading vr to decompose Hp = Hi @ Hy = C @ C into the two eigenspaces
HE = {1 € Hp |y = £¢}. Hence, we can decompose accordingly

(1 0
7F—0_1-

Because the grading must satisfy the relations [yp,a] = 0 and Dpyp = —vpDp,
the hermitian Dirac operator Dp must be off-diagonal and the action of an element
a € Ap on 1) € Hp can be written as

o= () E) =
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Thus, the even finite space Fyx we will study in this section is given by

(Ap,Hp, Dr,vr) = <(Cz7(cz7 (g é)» <(1) _?))7 (4.2)

where Dy is determined by some complex parameter ¢ € C, and where the action
of Ap on Hp given by (4.1).

Next, we want to introduce a real structure (or conjugation operator) on the
finite space Fy, so we must give an antilinear isomorphism Jr on C? which satisfies
the conditions of Definition 2.3.

Proposition 4.1. The finite space Fx for the two-point space, given by (4.2), can
only have a real structure Jp if Dp = 0.

Proof. We must have JF2 = ¢ and Jpyp = €’ypJp, and we shall consider all
possible (even) KO-dimensions separately. Thus, we apply Lemma 2.1 to the finite
space Fy given above and, for each even KO-dimension, also impose the relations
[a,b°] =0 and [[DF, a],b°] = 0. This gives:

KO-dimension 0. We have Jp = (jg jo_ )C for j+ € U(1). For b = (bg bo_) we

then obtain
. b haraaa 0
B — J+0+]+ . =0
0 j-b_j_

and see that this indeed commutes with the left action of a € C2. Next, we check
the order one condition

0= [[DFva]vbO] = (a+ —a-)(by —b-)Dp.
Since this must hold for all a,b € C2, we conclude that we must require Dy = 0.

KO-dimension 2. We have Jp = (_Oj é)C for j € U(1). We now obtain

50 _ g 00\ _ (b 0)
0 jbyj 0 by)’
and see that this indeed commutes with the left action of a € C2. Next, we check
the order one condition
0= [[DFva]vbO] = (a+ —a-)(b— —b4)Dp.
Again we conclude that we must require Dp = 0.

KO-dimension 4. We have Jr of the same form as in KO-dimension 0, but now
with jo = —j1 € U(1). This implies that j. = 0, so the given finite space cannot
have a real structure in KO-dimension 4.

KO-dimension 6. We have Jp = (? é)C for j € U(1). We again obtain

o _ (-3 0 :<b_ o)
0 gbyj) N0 be)7
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just as for KO-dimension 2. Hence again the commutation rules are only satisfied
for Dp = 0. O

4.1.2. The product space

Let M be a compact four-dimensional Riemannian spin manifold. We will now
consider the almost-commutative manifold M x F given by the product of M with
the even finite space Fy corresponding to the two-point space, as given in (4.2).
Thus we consider the almost-commutative manifold given by the data

M x Fy := (C®(M,C*,L*(M,S)®C3 DL, v @vr, Jp @ Jr),

where we still need to make a choice for Jp. The algebra of this almost-commutative
manifold is given by C*°(M,C?) ~ C*°(M) & C*(M). By the Gelfand-Naimark
theorem (see, for instance, [33, Theorem 1.4]), this algebra corresponds to the space
N :=M x X ~ M UM, which consists of the disjoint union of two identical copies
of the space M, and we can write C®°(N) = C>®(M) & C>°(M). We can also
decompose the total Hilbert space as H = L?(M, S)® L?(M, S). For a,b € C>(M)
and 1, ¢ € L*(M, S), an element (a,b) € C°°(N) then simply acts on (¢, ¢) € H
as (a,b)(1, ) = (at), be).

Distances. In (2.3) we have given a formula for a generalized notion of distance
on almost-commutative manifolds. We can straightforwardly restrict this formula
to our finite space Fy, and we write

dpy(2,y) = sup{la(z) —a(y)| - a € Ap, ||[DF, all| <1}

Note that we now have only two distinct points x and y in the space X, and we shall
calculate the distance between these points. An element a € C? = C(X) is specified
by two complex numbers a(z) and a(y), so the commutator with Dp becomes

[Pr.o] = (g é) (a(ox) a?@/)) - (a(ox) a(oy)> (g é)

The norm of this commutator is given by |a(y) — a(x)] [t], so ||[DF,a]|| < 1 implies
la(y) —a(x)| < ﬁ We thus obtain that the distance between the two points x and
y is given by
1
dp,.(x,y) = —.
DF‘( y) |t|
If there is a real structure Jg, we have t = 0 by Proposition 4.1, so then the distance
between the two points becomes infinite.

Let p be a point in M, and write (p,z) or (p,y) for the two corresponding
points in N = M x X. A function a € C*°(N) is then determined by two functions
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g, ay € C(M), given by a5 (p) := a(p,x) and ay(p) := a(p,y). Now consider the
distance function on N given by

dpei(n1,n2) = sup{la(ni) —a(na)| - a € A, [[[D @1, a]|| <1}

If n; and ng are points in the same copy of M, for instance if ny = (p,z) and
ng = (g, x) for points p,q € M, then their distance is determined by |a.(p) — a(q)],
for functions a, € C°°(M) for which ||[D,a.]|| < 1. Thus, in this case we obtain
that we recover the geodesic distance on M, i.e. dpg(n1,n2) = dy(p, q).

However, if n; and ny are points in a different copy of M, for instance if ny =
(p,z) and no = (¢,y), then their distance is determined by |a,(p) — ay(q)| for two
functions a,, a, € C°°(M), such that ||[D,a.]|| < 1 and ||[)D, a,]|| < 1. These latter
requirements however yield no restriction on |az(p) — ay(q)|, so in this case the
distance between nq and ns is infinite. We thus find that the space N is given by
two disjoint copies of M, which are separated by an infinite distance.

It should be noted that the only way in which the distance between the two
copies of M could have been finite, is when the commutator [Dp,a] would be
non-zero. This same commutator generates the Higgs field ¢ of (2.14), hence the
finiteness of the distance is related to the existence of a Higgs field.

4.1.3. U(1) gauge theory

We would now like to determine the gauge theory that corresponds to the almost-
commutative manifold M x F. The gauge group G(A) as defined in Definition 2.5 is
given by the quotient U(A)/U (VATJ)7 so if we wish to obtain a nontrivial gauge group,
we need to choose J such that U(A;) # U(A). By looking at the form of Jx for the
different (even) KO-dimensions, as given in Sec. 4.1.1, we conclude that we need to
have KO-dimension 2 or 6. It has been observed independently by Barrett [63] and
Connes [64] that in the noncommutative description of the Standard Model, the
correct signature for the internal space should be KO-dimension 6. Therefore, we
choose to work in KO-dimension 6 here as well. The almost-commutative manifold
M x Fy then has KO-dimension 6 + 4 mod 8 = 2. This means that we can use
Definition 2.7 to calculate the fermionic action. Therefore, we will consider the
finite space Fy given by the data

o= (eeon= (g )e=(2 7))

which defines a real even finite space of KO-dimension 6. Now, let us derive the
gauge group.

Proposition 4.2. The gauge group G(Ar) of the two-point space is given by U(1).

Proof. First, note that U(Ar) = U(1) x U(1). We will show that U((Ap)s,) =
U(Ar) N (AF) s, = U(1) so that the quotient G(Ar) ~ U(1) as claimed. Indeed,
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for a € C? to be in (.,ZF)JF it has to satisfy Jpa*Jp = a. Since

Ja*J*_OCmO OC_CLQO
FEYr = o o)\o a)\c o) \o a)

this is the case if and only if a1 = ay. Thus, (Ap),, ~ C whose unitary elements
form the group U(1), contained in U(Ap) as the diagonal subgroup. |

In Proposition 3.4, we have calculated the spectral action of an almost-
commutative manifold. Before we can apply this to the two-point space, we need
to find the exact form of the field B,. Since we have (Ap)y, ~ C, we find that
br = u((Ar)s,) ~ iR. From Proposition 2.2 and Eq. (2.19) we then see that the
gauge field A, (z) € igr = i(u(Ar)/(iR)) = isu(Ar) ~ R becomes traceless.

Let us consider in detail how we obtain this U(1) gauge field. An arbitrary
hermitian field of the form A, = —iad,b would be given by two U(1) gauge fields
Xi, Xi € C°(M,R). However, because A, only appears in the combination A, —
JpA,Jpt, we obtain

B, = A, —JpA,J:! (X‘l‘ 0) (X*Q‘ 0)
p — Hp —JFPApdp = -
0 Xﬁ 0o x!

I
Y, 0
= = Y# ®7Fa
0 -v,

where we have defined the U(1) gauge field Y, := X! — X7 € C*(M,R) =
C*°(M,iu(1)). Thus, the fact that we only have the combination A + JAJ" effec-
tively identifies the U(1) gauge fields on the two copies of M, so that A, is deter-
mined by only one U(1) gauge field. This ensures that we can take the quotient of
the Lie algebra u(Ap) with hr. We can then write

1 (Y. 0 1
A = — = —
" 2(0 _y) PRGN

which yields the same result:
B,=A,— JpA,Jp" =24, =Y, ®rF. (4.3)
We summarize:

Proposition 4.3. The inner fluctuations of the almost-commutative manifold M x
Fx described above are parametrized by a U(1)-gauge field Y,, as

Dw— D'=D++"Y, @ p.

The action of the gauge group G(A) ~ C>°(M,U(1)) on D', as in (2.20), is imple-
mented by

Y, — Y, —iudu*, (uegG(A).
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Remark 4.1. In [65] it was observed that a U(1) gauge theory can also be described
by a spectral triple based on the algebra Ar = C, but with a real representation on
the Hilbert space Hr = C2, which leads to the same action of the gauge group U(1).

4.2. Electrodynamics

Inspired by the previous section, which shows that one can use the framework
of noncommutative geometry to describe a gauge theory with the abelian gauge
group U(1), we shall now attempt to describe the full theory of electrodynamics.
Our approach provides a unified description of gravity and electromagnetism, albeit
at the classical level. Earlier attempts at such a unified description have originated
from the work of Kaluza [11] and Klein [12] in the 1920’s. In their approach, a
new (compact) fifth dimension is added to the four-dimensional spacetime M. The
additional components in the five-dimensional metric tensor are then identified with
the electromagnetic gauge potential. Subsequently it can be shown that the Einstein
equations of the five-dimensional spacetime can be reduced to the Einstein equations
plus Maxwell equations on four-dimensional spacetime. We note that our approach
via almost-commutative manifolds is fundamentally different from Kaluza—Klein
theory. Instead of adding new dimensions, we expand our four-dimensional manifold
M by a discrete internal two-point space X. Thus, we consider the new space
N =M x X = M UM consisting of two disjoint copies of M. In our case, the gauge
group U(1) does not arise from an additional compact dimension, but instead from
the algebra of functions on the discrete space X.

We have seen that the almost-commutative manifold M x Fy describes a gauge
theory with local gauge group U(1), where the inner fluctuations of the Dirac oper-
ator provide the U(1) gauge field Y),. There appear to be two problems if one wishes
to use this model for a description of (classical) electrodynamics. First, by Proposi-
tion 4.1, the finite Dirac operator Dp must vanish. However, we want our electrons
to be massive, and for this purpose we need a finite Dirac operator that is non-zero.

Second, from [66, Chap. 7, §5.2], we find the usual Euclidean action for a free
Dirac field to be of the form

S=- /i@(w”aﬂ — m)yd e, (4.4)

where the fields ) and v (as usual for a Euclidean field theory) must be considered
as totally independent variables. Thus, we require that the fermionic action Sy
should also yield two independent Dirac spinors. Let us write {e, €} for the set of
orthonormal basis vectors of Hp, where e is the basis element of H}. and € of H.
Note that on this basis, we have Jpe = €, Jpeé = e, ype = e and ype = —e. The
total Hilbert space H is given by L?(M,S) ® Hp. Since we can also decompose
L?(M,S) = L?*(M,S)" @ L*(M,S)~ by means of 5, we obtain that the positive
eigenspace H™ of v = 75 ® vr is given by

HT =L*(M,S)" @ HE & L*(M,S)” @ Hp.
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An arbitrary vector & € HT can then uniquely be written as
=YL®e+Yr®cE,

for two Weyl spinors ¢y, € L%(M,S)" and ¢» € L?(M,S)~. One should note here
that this vector ¢ is completely determined by only one Dirac spinor ¢ := ¢1, + ¥R,
instead of the required two independent spinors. Thus, the restrictions that are
incorporated into the fermionic action of Definition 2.7 are such that the finite
space FY is in fact too restricted.

4.2.1. The finite space

It turns out that both problems sketched above can be simply solved by doubling
our finite Hilbert space. Hence, we will start with the same algebra C>° (M, C?) that
corresponds to the space N = M x X ~ M LI M. The finite Hilbert space will now be
used to describe four particles, namely both the left-handed and the right-handed
electrons and positrons. We will choose the orthonormal basis {er, ey, ex,er} for
Hp = C*, with respect to the standard inner product. The subscript L denotes
left-handed particles, and the subscript R denotes right-handed particles, and we
have yper = er, and yper = —eg.

We will choose Jr such that it interchanges particles with their antiparticles, so
Jrer = er and Jpep = er. We will again choose the real structure such that is has
KO-dimension 6, so we have J% =1l and Jpyp = —ypJp. This last relation implies
that the element er is left-handed and ez is right-handed. Hence, the grading ~vp
and the conjugation operator Jp are given by

100 0 0 0 C 0
|oro of , _foo0o0cC
=L o001 ol Pl o 0 o0

000 -1 0 C 0 0

The grading v decomposes the Hilbert space Hr into Hy & Hg, where the
bases of Hy and Hp are given by {er,er} and {eg,er}, respectively. We can
also decompose the Hilbert space into H. ® He, where H, contains the electrons
{er,er}, and Hg contains the positrons {ex,er}.

The elements a € Ar = C? now act on the basis {er,er,er, e} as

a 0 0 0
o a1 0 a1 0 0
‘= <a2) 1o 0 a 0] (45)
0 0 0 a

Note that this action commutes with the grading, as it should. We can also easily
check that [a,b°] = 0 for bY := Jpb* J;, since both the left and the right action are
given by diagonal matrices. For now, we will still take Dy = 0, and hence the order
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one condition is trivially satisfied. We have now obtained the following result:

Proposition 4.4. The finite space
FED = (C2a C4a 07 VF, ']F)

as given above defines a real even finite space of KO-dimension 6.

4.2.2. A non-trivial finite Dirac operator

Let us now consider the possibilities for adding a non-zero Dirac operator to the

finite space Fjp. Since Dpyp = —yrpDp, the Dirac operator obtains the form
0 di do O
d 0 0 d
Dp — o 3
do 0 0 dy
0 d3 di O

Next, we impose the commutation relation DpJrp = JpDp, which implies dy = dy.
For the order one condition, we calculate

0 0 —do 0
Drd—(@—a) | ° 0 75
do 0 0 0
0 d3 O 0
which then imposes the condition

0 0 do O
0= [Dr.al ) = (@ —a2)b=01) | 0 o o
0 ds 0 O

Since this must hold for all a, b € C2, we must require that ds = d3 = 0. To conclude,
the Dirac operator only depends on one complex parameter and is given by

0 4 0 0
0 0 0 d
0 0 40

From here on, we will consider the finite space Fj;, given by

Fop := (CQ,C4,DF,7F, ']F)

4.2.3. The almost-commutative manifold

By taking the product with the canonical triple, our almost-commutative manifold
(of KO-dimension 2) under consideration is given by

M x Fyp := (C®(M,C?),L*(M,S) @ C* D @1 +v5 @ Dp,vs @ vr, Jar @ Jr).

1230004-47



K. van den Dungen € W. D. van Suijlekom

As in Sec. 4.1, the algebra decomposes as C°°(M,C?) = C°>°(M) & C*°(M), and
we now decompose the Hilbert space as H = (L*(M,S) @ H.) & (L?*(M, S) @ Hz).
The action of the algebra on H, given by (4.5), is then such that one component
of the algebra acts on the electron fields L?(M, S) ® H., and the other component
acts on the positron fields L?(M, S) @ He.

The derivation of the gauge group for Fj, is exactly the same as in Propo-
sition 4.2, so again we have the finite gauge group G(Ar) ~ U(1). The field
B, = A, — JpA,J} now takes the form

Y, 0 0 0
0 Y, 0

B, = " for Y, (z) € R. (4.7)
0 0 -V,

0 0 0 =Y,
Thus, we again obtain a single U(1) gauge field Y),, carrying an action of the gauge
group G(A) ~ C*(M,U(1)) (as in Proposition 4.3).

As mentioned before, our space N consists of two copies of M, and the distance
between these two copies is infinite (cf. Sec. 4.1.2). Now, we have introduced a
non-zero Dirac operator, but it commutes with the algebra, i.e. [Dp,a] = 0 for all
a € A. Therefore, the distance between the two copies of M is still infinite.

To summarize, the U(1) gauge theory arises from the geometric space N =
M U M as follows. On one copy of M, we have the vector bundle S ® (M x H.),
and on the other copy the vector bundle S ® (M x Hz). The gauge fields on each
copy of M are identified with each other. The electrons e and positrons € are then
both coupled to the same gauge field, and as such the gauge field provides an
interaction between electrons and positrons. Note the different role that is played
by the internal space with Kaluza—Klein theories.

4.2.4. The Lagrangian

We are now ready to explicitly calculate the Lagrangian that corresponds to the
almost-commutative manifold M x Fy;,, and we will show that this yields the usual
Lagrangian for electrodynamics (on a curved background manifold), as well as a
purely gravitational Lagrangian. The action functional for an almost-commutative
manifold, as defined in Definition 2.7, consists of the spectral action S, and the
fermionic action Sy, which we will calculate separately.

The spectral action. The spectral action for an almost-commutative manifold
has been calculated in Proposition 3.4, and we only need to insert the fields B,
(given by (4.7)) and ® = Dp. We obtain the following result:

Proposition 4.5. The spectral action of the almost-commutative manifold
M x Fy, = (C>(M,C?),L*(M, S) ® C*,
DRI+~ ®Dp,vs®@7r, Ju © Jr)
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s given by

D _
(7(52)) ~ [ o)Vl + 0,
for the Lagrangian

L(Gpvs Y) = 4Ly () + Ly (Vi) + L (9w, d).

Here Lr(g,w) is defined in Proposition 3.3. The term Ly gives the kinetic term of
the U(1) gauge field Y,, and equals
f(0) v
EY(Y‘M) = 6?.?#1,.7:# y
where we have defined the curvature F,, of the field Y, as F,, = 0,Y, — 0,Y,.
The Higgs potential Ly (ignoring the boundary term) only gives two constant terms
which add to the cosmological constant, plus an extra contribution to the Einstein—
Hilbert action:
2 fo\2

T2

f(0)
|d|* + 5

—ld" + SO ap.

LH(g#y) = 1972

Proof. The trace over the Hilbert space C* yields an overall factor N = 4. The
field B,, is given by (4.7), and we obtain Tr(F),, F*") = 4F,, F"". Inserting this into
Proposition 3.4 provides the Lagrangian Ly . In addition, we have ®* = Dp? = |d|?,
and the Higgs Lagrangian Ly only yields extra contributions to the cosmological
constant and the Einstein-Hilbert action. |

4.2.5. The fermionic action

We have written the set of basis vectors of Hr as {eg, er,€x, €L}, and the subspaces
H . and ‘Hy are spanned by {er,exr} and {eg, 2L}, respectively. The total Hilbert
space ‘H is given by L*(M,S) ® Hp. Since we can also decompose L?(M,S) =
L*(M,S)" & L*(M,S)~ by means of 75, we obtain
HT =L*(M,S)" @ HE & L*(M,S)” @ Hp.

A spinor ¢ € L?(M,S) can be decomposed as 1) = 11, + ¥ g. Each subspace H;E
is now spanned by two basis vectors. A generic element of the tensor product of
two spaces consists of sums of tensor products, so an arbitrary vector ¢ € HT can
uniquely be written as

E=XrR®er+ XL ®er +Yr ®er +Yr €L, (4.8)

for Weyl spinors xr,vr € L?*(M,S)* and xr,vr € L?(M,S)~. Note that this
vector € € H™ is now completely determined by two Dirac spinors x := xr + Xr
and ¢ 1= Y + Yr.

Proposition 4.6. The fermionic action of the almost-commutative manifold

MXFED :(COO(M7C2)7L2(M7S)®C471D®H+’75®DF7’75 ®’7F7JM®JF)
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s given by
Sp = —i(JuX, Y (V5 — i¥,)0) + (JuXe, ALY — (JaXr, dUr).
Proof. The fluctuated Dirac operator is given by

Dy=DRI4+~+*®@ B, + 7 ® Dp.

An arbitrary ¢ € HT has the form of (4.8), and then we obtain the following
expressions:

JE=Juxr®@er+ Juxr ®er + Iy @ er + Juyr Qer,
(PODE=Dxr@er+ Pxi ®er + Pyr @ er + Pyr ©er,
(V" ® BL)¢ = v"Xr @ Yyer +¥Y'x1L ® Yyer — v ® Y, er — v"Yr @ Y, L,
(75 ® Dp)é = y5xL ® der + y5Xr @ dep, + V51R ® deg + y5thp ® der.
We decompose the fermionic action into the three terms
SUE DAE) = SWIE (D@ D& + 3(JE, (" @ BL)E) + 5 (JE, (s @ D)),

and then continue to calculate each term separately. The first term is given by

SIE (D © D) = L (InXn PTL) + & (IniKe, PTr)

+ %(JMJL,J%NCR} + %<JMQZR7m>~(L>~

Using the fact that ) changes the chirality of a Weyl spinor, and that the subspaces
L*(M,S)" and L*(M,S)~ are orthogonal, we can rewrite this term as

LUE (B O DE) = (I D) + LD D).
Using the symmetry of the form (JasX, [P%), we obtain
SR (B © 18 = (% D) = ~ilInX /YD)

Note that the factor % has now disappeared in the result, and this is the reason why
this factor is included in the definition of the fermionic action. The second term is
given by

~ ~ _ ~ 1 B -
SUE (3 © BE) = — (iK1 Yodh) — 54T 7 Vi)

1 ~ - 1 ~ .
+ §<JM¢L,W“YMXR> + §<JM'(/1R»'7MYMXL>'

In a similar manner as above, we obtain
1, ~ - N N
§<‘]§a (’Yu 2 Bu)£> = _<JMXa V#Y;ﬂm,
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where we have used that the form (Jy/Y, v“YMZ) is anti-symmetric. The third term
is given by

%(Jg, (75 © D)€Y = =(JnXr, dys¥r) + <JM>7L, dysibr)

l\.’)l»—~

~ - 1 ~ .
+ §<JM¢L,d75XL> + §<JM1/JR,d75XR>-

The bilinear form (Jy/X, 751% is again symmetric, but we now have the extra com-
plication that two terms contain the parameter d, while the other two terms contain
d. Therefore we are left with two distinct terms:

SUE. (35 © D)) = (In e, @1 — (i 00m). 0

Remark 4.2. It is interesting to note that the fermions acquire mass terms with-
out being coupled to a Higgs field. However, it seems we obtain a complex mass
parameter d, where we would desire a real parameter m. By simply requiring that
our result should be similar to (4.4), we will choose d := —im, so that

(JnXe.d9r) = (JuXr, ddr) = i(JaX, mi).
The results obtained in this section can now be summarized into the following

theorem.

Theorem 4.1. The full Lagrangian of the almost-commutative manifold
M x FED = (COO(M7(C2)aL2(MaS) ®C4,¢®H—|—’75 ®DFa’75 ®’7F7JM ®‘]F)

as defined in this section, can be written as the sum of a purely gravitational
Lagrangian,

Loran (guz/) = 4£M(9;w) +Lu (QW),

and a Lagrangian for electrodynamics,

. ~ . ~ 0 v
Lep = —i(JuX, ('y”(Vﬁ —1Y,) —m)Y) + %f#y}‘“ )

Proof. The spectral action Sp and the fermionic action Sg are given by Proposi-

tions 4.5 and 4.6. This immediately yields L,,... To obtain Lg,, we need to rewrite

the fermionic action Sp as the integral over a Lagrangian. The inner product (,)

on the Hilbert space L%(9) is given by

(€ 0) = / (&, )y/Tgldz,

where the hermitian pairing (,) is given by the pointwise inner product on the
fibers. Choosing d = —im as in Remark 4.2, we can then rewrite the fermionic
action into

Sp = — / i, (VS — iY,,) — m)d)/Jgldz. o
M
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4.2.6. Fermionic degrees of freedom

To conclude this section, let us make a final remark on the fermionic degrees of
freedom in the Lagrangian derived above. For this purpose, we will first give a
short introduction to Grassmann variables, and use this to find the relation between
the Pfaffian and the determinant of an antisymmetric matrix. For more details we
refer the reader to [67, §1.5]. Subsequently, we shall use the Grassmann integrals
to briefly study the path integral of the fermionic action for electrodynamics.

For a set of anticommuting Grassmann variables 0;, we have 6;0; = —0;0;, and
in particular, 7 = 0. On these Grassmann variables 6;, we define an integral by

/uwj =0, /@dej =1

If we have a Grassmann vector # consisting of N components, we define the integral
over D[] as the integral over df; - - - df. Suppose we have two Grassmann vectors
n and 6 of N components. We then define the integration element as D(n, 6] =
dmd&l s andGN.

Consider the Grassmann integral over a function of the form e?" AN for Grass-
mann vectors € and n of N components. The N x N-matrix A can be considered
as a bilinear form on these Grassmann vectors. In the case where 6 and n are
independent variables, we find

/ " ANDI 6] = det A, (4.9)
where the determinant of A is given by the formula

1 g T
det(A) = i Z (=D)AL 1)y As vy (s

: o,T€llN

where Il denotes the set of all permutations of 1,2, ..., N. Now let us assume that
A is an antisymmetric N x N-matrix A for N = 2[. If we then take 6§ = n, we find

[ et mpla) = prca), (4.10)
where the Pfaffian of A is given by

—1)! .
Pf(A) = (2ll') Y (=DM As)o)  As@i—1)o@)-
: o€clly

Finally, using these Grassmann integrals, one can show that the determinant of a
2l x 2] skewsymmetric matrix A is the square of the Pfaffian:

det A = Pf(A)2.

So, by simply considering one instead of two independent Grassmann variables
in the Grassmann integral of eeTA”, we are in effect taking the square root of a
determinant.
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As mentioned after Definition 2.7, the number of degrees of freedom of the
fermion fields in the fermionic action is related to the restrictions that are incorpo-
rated into the definition of the fermionic action. These restrictions make sure that
in this case we obtain two independent Dirac spinors in the fermionic action.

In quantum field theory, one would consider the functional integral of e® over
the fields. Let us now denote 2l for the antisymmetric bilinear form on H™ and B
for the bilinear form on L?(M, S), given by

Ql(§7 C) = <J§7 DAC>7 for fa( € H+7
%(Xﬂl}) = _Z<JMX7 (’yu(vﬁ - ZYM) - m)w% for Xaz/} S Lz(Mv S)
We have shown in Proposition 4.6 that for £ = xp ® e + xr ® e + Yr R ep +

11, ®€R, where we can define two Dirac spinors by x := xr+ xr and ¢ := ¢p + ¥R,
we obtain

SA(E) = B(x )

Using the Grassmann integrals that were calculated in (4.9) and (4.10), we then
obtain for the bilinear forms 2l and 95 the equality

PH(2A) = /e%m@@D[E] = /e%@@p[&,g] = det(B).

5. The Glashow—Weinberg—Salam Model

In the previous section we have described the theory of electrodynamics on an
almost-commutative manifold. It has been shown in [10] (see also [27]) that for
a suitable choice of the finite space, the corresponding almost-commutative mani-
fold gives rise to the full Standard Model (see Sec. 6). The present section serves
as an intermediate step between these two models. We will modify the finite space
F;, for electrodynamics such that it will incorporate the weak interactions. In other
words, we will reproduce the Glashow—Weinberg—Salam Model, which describes the
electroweak interactions for one generation of the leptonic sector of the Standard
Model. An important feature of the Standard Model already occurs in this elec-
troweak theory, namely the Higgs mechanism. The main purpose of this section is
to show how this Higgs mechanism arises from an almost-commutative manifold,
without worrying about the quark sector present in the Standard Model.
Although it is perfectly possible to derive the fermionic action for this model,
by exactly the same approach as for electrodynamics in Sec. 4, we will refrain from
doing so. The Higgs mechanism is given solely in the bosonic part of the Lagrangian,
and for now we will therefore only focus on the spectral action. In Sec. 6 we will
discuss the full Standard Model, and we shall derive the fermionic action there.

5.1. The finite space

We start by constructing a finite space Fygys, starting with the finite space Fjp
for electrodynamics from the previous section. In the latter case, the finite Hilbert
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space was given by the basis {eg, ey, g, €r }. Similarly, we will now also incorporate
the left- and right-handed neutrinos and anti-neutrinos given by {vg, vy, Vg, 75}
Together, these particles form the first generation of the leptons and anti-leptons
in the Standard Model. We write H; = C* for the space of leptons, given by
the basis (vg,er,vr,er). The space of anti-leptons H; = C* then has the basis
(VR,eR, VL, er). The total finite Hilbert space is given by

HF = Hl @Hf'

In the case of electrodynamics, the algebra was given by C & C. We must expand
this algebra such that it will describe the weak interactions as well. We do this by
replacing the second copy of C by the quaternions H, so we shall take

Ar =Co H.

We can write ¢ € H as ¢ = a+ (j for o, 8 € C. We shall write ¢, for the embedding
of C in H. The quaternions H can be embedded into Ms(C) as

A0 a B
(D\:<O X)’ q=<_B a)' (5.1)

Note that the embedding H C M3(C) is real-linear, but not complex-linear, and
consequently the algebra Ap should be considered as a real algebra. An element
a = (A, q) € Ap acts on the space of leptons H; by multiplication with the matrix

A0 0 0
0 0O X 0 0

a=0q) — [P _ (5.2)
0 ¢ 0 0 a p
0 0 -8 @

For the action of a on an antilepton [ € H; we set al = Al

The Zs-grading vr and the real structure Jp are chosen in the same way as
for electrodynamics, such that we will again obtain a finite space of KO-dimension
6. The antilinear conjugation operator Jpr interchanges particles with their anti-
particles, so Jpl = I and Jgl = I. The Zo-grading g is chosen such that left-
handed particles have positive eigenvalue and right-handed particles have negative
eigenvalue. As before, C' stands for complex conjugation, so on the decomposition
H =Hip ® Hi, ® Hy; & Hy- we can write

100 0 0 0 C 0
oo of , _foo0o0c
=001 o] FTle oo 0 o0

000 —1 0 C 0 0

5.1.1. The finite Dirac operator

We are left only with deriving the most general form of the Dirac operator Dp that
is consistent with the above definitions. First, Dp must be hermitian, which implies
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S T
A VA

on the decomposition H = H; @ Hj, for hermitian S,S’. Since the finite space is
even, we need that Dp commutes with Jg:

oIt -T) (8- 8"
oS -8S) OT-1%))

that we can write

O:[DF,JF]:<

This imposes the relations S’ = S and T' = T'7. We also require that Dy anticom-
mutes with vg, which yields

0= Dpyr +vrDr
1 0\ ,.(1 o0 ~1 0 ~1 0\,

S(O 1) T(O —1) (O 1>S (O 1>T

1 0 1 0 *

(% 1) 56 )

This means that we can write

0 Y& T 0
S = ), =" :
Yo O 0o Ty

where Ty and T, are required to be symmetric. We will consider the restriction
that Tvgr = YrUR for some complex parameter Yz, and Tl = 0 for all other leptons
[ # vgr. As will be shown below, this restriction makes sure that the order one
condition (2.6) is satisfied. The mass matrix Y; can be written as a diagonal matrix
by simply requiring that the basis elements of Hp are mass eigenstates. Hence we

shall take
Y, O
Yo = ;
( 0 Y)

for two complex parameters Y, and Y,. We now arrive at the following result.
Proposition 5.1. The data

Fows == (Ap,Hr,Dr,vr, JF)

as given above define a real even finite space of KO-dimension 6.

Proof. One immediately sees that vr commutes with the algebra Ap. We have
already shown that DpJp = JpDp and [Dp,vr] = 0. We also have J2 = 1 and
Jryr = —ypJp. From the table in Definition 2.3 we then see that we have KO-
dimension 6. It remains to check the order one condition [[Dp, a],b] = 0. The action
of the algebra on ‘Hj is by scalar multiplication, so we find that [S,a] = 0 on H;.
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On H;, the right action a® = Ja*J* = ) is also just scalar multiplication, so we

obtain that
S 0\ 1.0]_
[ 5)efv] -

Since avg = A\vgr and also aVr = AR, the action of a commutes with 7', and the
order one condition is indeed satisfied. O

5.2. The gauge theory

Let us describe the gauge theory corresponding to the almost-commutative manifold
M X Fgys. We will frequently make use of the Pauli matrices 0%, which are given by

S Yl N (R R

5.2.1. The gauge group

First, we need to derive the local gauge group from the finite space Fgys. Let us
start by examining the subalgebra (.ZF)JF of the algebra Ap = C@H, as defined in
Sec. 2.3.1. This subalgebra is determined by the relation aJr = Jra®. An element
a = () q) € COH satisfies this relation if \ = A = a =@ and 3 =0, so if a = (z, )
for x € R. Hence we find that

(Ar)s, ~R. (5.4)

Next, let us consider the Lie algebra hr = u((Ap)s,) of (2.11b). The anti-
hermitian elements u € u(Ap) are given by v = (A, ¢) for A € iR and for iq a linear

combination of the Pauli matrices of (5.3). In particular this means that A=\
Hence in the cross-section hr = u((Ar)s,) we find a =a@ =X =X = -\ = 0.
Hence hp is given by the trivial subset

hr = {0}. (5.5)

Proposition 5.2. The local gauge group of the finite space Fgys is given by
G(Fows) ~ (U(1) x SU(2))/{1,—1}.

Proof. The unitary elements of the algebra form the group U(Ap) ~ U(1) x
U(H). The quaternions are spanned by the identity matrix I and the anti-hermitian
matrices io;, where o; (j = 1,2,3) are the Pauli matrices. A quaternion ¢ =
qoll +iqio1 +igaos + ig3o3 is unitary if and only if |¢|? = qo? + @12 + 2% + 3% = 1.
By using the embedding of H in M(C), we find |q|? = det(q) = 1, and this yields
the isomorphism U(H) ~ SU(2) (for more details, see, for instance, [68, §1.2.B]).
Note that if ¢ is unitary, then so is —gq.

From (5.4), we know that (Ap)s. = R. The group Hp = U((Ap)j,) is then
given by Hp = {1,—1}. From (2.10), we find the gauge group G(Fgws) to be the
quotient U(Ap)/Hp. O
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Note that, although we obtain the gauge group (U(1) x SU(2))/{1,—1}, this
is very similar to U(1) x SU(2), since both groups have the same Lie algebra
u(l) & su(2).

As shown in Proposition 2.2, the unimodularity condition is satisfied naturally
only for complex algebras. In this case however we only have a real-linear repre-
sentation of the algebra, so the unimodularity condition is not satisfied. Indeed, in
(5.5) we found that the Lie subalgebra b is trivial, and hence the gauge field A,
takes values in the Lie algebra gr = u(Ar)/br = u(Ar) = u(1) © su(2), which is
obviously not unimodular, because of the presence of the u(1) part. Note that in this
particular case we also would not want the unimodularity condition to be satisfied,
because that would mean that our electromagnetic U(1) gauge field would vanish.

5.2.2. The gauge fields and the Higgs field

Let us now derive the precise form of the gauge field A, of (2.13) and the Higgs
field ¢ of (2.14). We take two elements a = (A,q) and b = (N,¢’) of the alge-
bra A = C*>°(M,C & H). The inner fluctuations A, = —iad,b are obtained from
(5.2) to be A, := —iAJ,\ on vg, A}, = —z’XaMX’ on eg, and Q, = —igd,q" on
(v1,er). Demanding the hermiticity of A, = Aj, implies A, € R, and also auto-
matically yields AL = —A,. Furthermore, @, = Q}, implies that @, is a real-linear
combination of the Pauli matrices, which span isu(2).

Next, we calculate the field ¢ = a[Dp, b]. In the proof of Proposition 5.1 we have
already noted that the only part of Dg that does not commute with the algebra is
given by S. Therefore, we start by calculating the commutator on H; given by

0 0 Y. (o = N) Y,p
5.4 = 0 0 Y3  Y.@-X\)
Y,(N =ao) =Y 0 0
v, B Y.\ - &) 0 0
By multiplying this with the element a, we obtain
0 0 Y.¢i Y.
s | 0 0 Va Y| 56)
Y1 —Yeoy 0 0
Yoo  Yegy 0 0

where we define®
_y =
¢ =aN =)+ B3, ¢=0aB - BN —d),
& = Mo/ — N, o = M\,
€This notation looks very similar to the notation of ¢1,p2, ¢}, ¢ that is used in [10] (see also

[27, Chap. 1, §15.2]), but we have taken ¢1 = ¢/ and ¢2 = —@,. The reason for this change in
notation is that we obtain an elegant formula for the gauge transformation in Proposition 5.3.
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By demanding ¢ = ¢*, we obtain ¢; = ¢; and ¢} = ¢,. Hence we find that the
field ¢ is completely determined by the complex doublet (¢1, ¢2).

In general, an inner fluctuation is given by a sum of terms, of the form A =
>_; a;[D, b;]. For such a general inner fluctuation, we simply need to redefine A, :=

— 210N and Q1= — 37, iqjﬁuq;, as well as

Zaj /\ —OZ)—FﬂJ It P2 = ZO‘jﬂ ﬁ )
G=YN0G-X),  G=YA
J J
To summarize, the fields A, and ¢ are given on ‘H; by
A, O
A.=1 0 ~A, , for A, eR, Q€ isu(2);
Qu
O Y* YV _Ye_
¢ — , for Y = d)l _¢2 R ¢1a ¢)2 e C. (57)
Y 0 Yiga  Yegy

On H; we have A, = A, and ¢ = 0. The gauge field B, = A, — Jp A, J} is then
given by
0 0 0
Bulw, =0 —2A, . Buly =10 2A, - (5.8)
Q. — A Al —Q,
Note that the coefficients in front of A, in the above formulas, are precisely the

well-known hypercharges of the corresponding particles, as given by the following
table:

Particle |VR er VL er

Hypercharge| 0o -2 -1 -1

The Higgs field ® is given in matrix-form as

@:DF+<‘§ 0)+J <(g 8>J;:<S;¢ (ST@)’ (5.9)

where ¢ is the matrix given by (5.6).

Proposition 5.3. The action of the gauge group G(M X Fgoys) on the fluctuated
Dirac operator

A=DRI+" OB, +7:0®
1s implemented by

Ay — Ay — IAON,
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Qu — qQuq” —1iq0.q",

(52) =7 (1) + Fa-n(5).
for A € C°°(M,U(1)) and q € C°(M, SU(2)).

Proof. We simply insert the formulas for the fields obtained in (5.7) into the
transformations given by (2.21). We shall write u = (X, q) € C°(M,U(1) x SU(2)).
On H; we see that A, commutes with . On (vg, er) we see that A, also commutes
with gx. Hence the only effect of the term uA,u” is to replace Q. by ¢Q.q".
Secondly, we see that the term —iud,u* is given by —i)\aux on vg and Hj, by
—iNI A = PN\ on eg, and by —igd,q* on (vp,er). We thus obtain the desired
transformation for A, and Q.

For the transformation of ¢, we separately calculate u¢u* and u[Dp,u*]. Since
¢ = 0 on Hz, we can restrict our calculation of u¢u* to H; and find

(86 (0 ™)

which is still hermitian. We then calculate that

« (o B\ [Yver ~Yedy\ (X 0
quA B <_B a) (YV¢2 Yeal ) (O )‘)
_ Y, (agy + Bo2)  AYe(Bd) — agy)
XY, (=B +ads)  AYe(@d, + Bdy) )

Now let us calculate the second term u[Dp,u*], where Dp is given in Sec. 5.1.1.
The operator T only acts on vi and therefore commutes with the algebra. On the
restriction to Hz, the operator S commutes with the algebra. Hence again we can
restrict our calculation to H;. The term u[S, u*] splits into uSu* — S, and (similarly

to ugu*) we find
0 Y* *
uSu* = . Drod
qYOCI,\ 0

v (@ BY (Y. 0\ (X 0)_ [ Ma A
Cob= 5 a)\o v.)\o A) "\ 2v3 aa)

Combining the two contributions to the transformation, we find that the transfor-
mation ugu* + u[S, u*] yields

yo (Yoo Y\ (B Y,
YI/¢2 Ye(bl Yvd)IQ Ye¢1
_ [ Molagi +Bé2)  AYe(B6, — ady) N A, (a—=1) A3
NY, (=B¢1 + ) AYe(agy + Bsy) SN\, MW.(@-1))

and
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where we have defined ¢} := X(ap1 + Bos +a) — 1 and ¢ := \(— By + aps — 3).
Rewriting this in terms of ¢ then proves the proposition. O

In (2.21), we have seen that in general the transformation of the field ¢ is not
a linear transformation. In the present model, Proposition 5.3 shows that it can be
reduced to an affine transformation of the doublet ¢1, ¢2. This can be rewritten in

the linear form
o1+ 1) < <¢1 + 1)
— A .
< P2 1 ¢2

One should note here that, whereas the complex doublet (¢1,¢2) corresponds to
the field ¢, the doublet (1,0) corresponds to the operator S, which is a part of
Dp. We thus see that the combination S+ ¢ has a linear transformation under the
gauge group.

5.3. The spectral action

In this section we will calculate the bosonic part of the Lagrangian of the Glashow—
Weinberg—Salam Model. The general form of this Lagrangian has already been
calculated in Proposition 3.4 so we only need to insert the expressions (5.8) and
(5.9) for the fields B, and ®. We first start with a few lemmas, in which we capture
the rather tedious calculations that are needed to obtain the traces of F),, F'*”, o2,
®* and (D, ®)(DH®).

Lemma 5.1. The trace of the square of the curvature of B,, is given by

Tr(F,, F*) = 120, AP + 2Tr(Q ., Q™).

Proof. Let us define the curvatures of the U(1) and SU(2) gauge fields by
Ay =0, Ay — O A,
Q;w = auQV - 81/@# + i[Qua QV]
Using (5.8), we then find that the curvature Fj,, of B, can be written as
0 0

F/.LU'HL - 0 _2Auy 5
Quu - A[U/I[Q

(5.10)

0 0
Fuwlwy; =10 2A,
AWH2 - (G)MV
The curvature squared thus becomes
0 0
FuF™ )y, = [0 4N, AP J
Q" + Ay Al — 27, Q"
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0 0
F;J,VFMV|'HT =10 4AM,,A'”V

(@) (Q)" + Ay ATz — 2, (Q)H
Since Qv is traceless, the cross-term —2A,, Q" will drop out after taking the
trace. Note that since @, is hermitian we have Q,, = Q7. We then see that @, is

also hermitian, since
Q) = 0,Q, - 0,9, +i[Q,,Q,] = 9,Q) - 2.Q +ilQ}, Q]
= (0,Qu = 0,Qu —i[Quu, Q)" = (Quu)"-
This implies that
Tr(Qu) (@) = Tr((Qu) (")) = Te((Q™ Qu)") = Te(QuvQ™)-
We thus obtain that
Tr(F, F*) = 120, A" 4+ 2Te(Q ., Q). m|

Lemma 5.2. The traces of ®> and ®* are given by
Tr(®?) = 4alH'|*> + 2c,
Tr(®*) = 40| H'|* + 8e|H'|* + 2d,

where H' denotes the complex doublet (¢1 + 1,¢2) and, following [10] (see also
(27, Chap. 1, §15.2]),

a= ‘YV|2 + |Y€|27

b= Y, [* +[Yel",

c=|Yg|% (5.11)
d=|Yr|",

e =|YrP|Y, .

Proof. The field ® is given by (5.9), and its square equals

o2 ((S+¢>)2+T*T (S+¢>)T*+T*(S+¢)>
T( '

[— (72

S+¢)+ (S+ )T S+¢) +TT"

The square of the off-diagonal part yields T*T = TT* = |Yx|? on v and D, and
zero on | # vg, Vr. The component S + ¢ is given by

0 Yrtyy
S+¢= .
¢ <Y+Y0 0 )

We then calculate

Y, |? 0
X =Y +Y)"(Y+Y) = |H b ,
0 |Ye?
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where we have defined the complex doublet H' := (¢1 + 1, ¢2). Similarly, we define
X" = (Y +Yy)(Y + Yp)* and note that Tr(X) = Tr(X’) by the cyclic property of
the trace. Since X = X* and Tr(X) = Tr(X7T), we also have Tr(X) = Tr(X). We
thus obtain that

Tr(92) = Te(X + X' + X + X ) + 2|Yg|?
=ATr(X) + 2|Yg|> = 4|V, |? + |Ye )| H'|? + 2|YR|*.
In order to find the trace of ®*, we calculate
Y, [t 0 Ye?IY, 2 0 Ye|t 0
0 |Ye| 0 0 0 0

We now also obtain a contribution from the off-diagonal part of ®2. Any term of the

form (S + ¢)T*(S + ¢)T (or a cyclic permutation thereof) vanishes. We do obtain
contributions from Tr((S + ¢)T*T'(S + ¢)) and three other similar terms, which
each yield the contribution |H'|?|Yx|?|Y, |>. We thus obtain

Tr(P4) = Te((X + T°T)2 + (X)) + (X + TT*)? + (X)2) + 4|H' 2|V 2|V, |2
= Tr(4X% + 4XT*T + 2(T*T)?) + 4| H'|*|YRr|*|Y, |?
= 4H' N[V " + |Yel") + 8| H'P|YR*Y, [* + 2| Y| O

Lemma 5.3. The trace of (D, ®)(D"®) is given by
Tr((D,®)(D"®)) = 4a| D, H'|?,

where H' denotes the complex doublet (p1 + 1, ¢2), and the covariant derivative lN)#
on H' is defined as

D,H' = 0,H +iQ%"H — i\, H'.

Proof. We need to calculate the commutator [B,,, ®]. We note that B,, commutes
with the off-diagonal part of Dp. It is thus sufficient to calculate the commutator
(B, S + ¢] on H;. We shall write Q, = Q0" + Q70* + Q30® as a superposition
of the Pauli matrices of (5.3) for real coefficients Qf,. We then obtain by direct
calculation

0 0 -Y,xi VX%
0 0 Y2 Yexu
[B;u S+ ¢] = _ )
YVXI YEXQ 0 0
YI/X2 _YEY1 0 0

where we have defined the new doublet y = (x1, x2) by
x1i= (91 +1)(Q) — Ay) + 62(Q, —iQ2),
X2 = (61 + 1)(Q +1Qp) + 62(=Qp — Ay).
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We then obtain that

D, (S + ¢)
= 0,0 +1i[By, S+ @]
0 0 Y (b1 —ix1)  Yu(0udo —iXo)
B 0 0 —Y (02 +ix2) Ye(Oud1 +ixa)
- Y, (01 +ix1)  —Ye(Oudy — iXo) 0 0
Y, (02 +ix2)  Ye(0udy —iXy) 0 0

We want to calculate the trace of the square of D,,®, for this reason we only need
to calculate the terms on the diagonal of (D,®)(D"®). We thus find

Try, (Du(S + 9))(DH(S + 6))) = 2a(|0u¢1 + ixa]? + 10,02 + ixa|?),

where we have used a = |V, |2 + |Y¢|? as in (5.11). The column vector H' is given
by the complex doublet (¢1 + 1, ¢2). We then note that 0,¢ + ix is equal to the
covariant derivative D, H’, so that we obtain

Trsq, (Du(S + ¢))(D(S + ¢))) = 2a| D, H'|%.

The trace over H; yields exactly the same contribution, so we need to multiply this
by 2 and thus obtain the desired result. |

Proposition 5.4. The spectral action of the AC-manifold
M X Foys = (C®°(M,C @& H), L*(M,S)® (C* o CY),
DRI+~ ®Dp,ys@7p, Ju © Jr)

defined in this section is given by

Tr(f(%)) ’V/ E(QquAquuvH/)\/md4x+O(A71)a
M

for the Lagrangian

ﬁ(g/wvAw qu Hl) = 8£M(gul/) + cA(Aw Qu) + EH(ngAw qu Hl)~

Here La(gu) is defined in Proposition 3.3. The term L4 gives the kinetic terms
of the gauge fields and equals

J(0 v v
20 @) = L0 (68,0 + TH(Qu ™)),
The Higgs Lagrangian Ly (ignoring the boundary term) gives
bf(0 —2afaA? +ef(0
Lor g s Qo 1) o= T gy 22002 4 SO0

™ ™
cf2A?  df(0)  af(0) .2, cf(0)

_ H AN

2 + 472 + 1272 ST+ 2472

af(0), ~

+ 2752)|DMH’|2. (5.12)
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Proof. We will use the general form of the spectral action of an almost-
commutative manifold as calculated in Proposition 3.4. From Lemma 5.1 we imme-
diately find the term £4. Combining the formulas of Tr(®2) and Tr(®*) obtained
in Lemma 5.2 we find the Higgs potential

L vty LOmian)
bf( )|H/|4 2af2A;2+ ef(0)|H/|2 Cf2 + Z/]Eg)

Note that the labt two constant terms yield a contributlon to the cosmological

constant term 4f7‘r‘A that arises from Lj;. The coupling of the Higgs field to the
scalar curvature s is given by
f(0) 2 af(0) n2 . ¢f(0)
Tr(9*) = — .
e T = o s+ o
Here the second term yields a contribution to the Einstein—Hilbert term —L 2/\2 s

of Lps. The last term is the kinetic term of the Higgs field including the minimal
coupling to the gauge fields, obtained from Lemma 5.3, which gives

f(0)

1O (e ore)) = L b, o

5.4. Normalization of kinetic terms

In Proposition 5.4 we have calculated the bosonic Lagrangian. We will now rescale
the gauge fields A, and @), and the Higgs field H' in such a way that their kinetic
terms are properly normalized.

5.4.1. Rescaling the Higgs field

We start with the Higgs field H' — H, and we will require that its kinetic term is
normalized as

1 ~
/ §|DMH|2\/|g|d4x.
M
This normalization is achieved by rescaling the Higgs field as

H = aJ; (20) o

(5.13)

5.4.2. The coupling constants

Next, let us consider the gauge fields A, and @, = @},0. We shall now introduce
coupling constants g; and go into the model by rescaling these fields as

1 1
A= 5913;“ Q= 592Wﬁ~

Note that we use the conventional notation B,, for the U(1) hypercharge field, which
should not be confused with the gauge field we introduced in (2.16). We define the

1230004-64



Particle Physics from Almost-Commutative Spacetimes

curvatures B, and W, by setting

1 a 1 a
A[U/ = §ngMV7 Q;u/ = 592Wuu'

Using (5.10), this yields
B, = 0,B, — 0,B,,
Wi, = 0, W — 9,WS — gae™ WWY,

where we have used the relation [0, 0¢] = 2i€?*c® for the Pauli matrices. We then
rewrite the trace of the square of the curvature, given by Lemma 5.1, to give

Tr(Fuw F*) = 31° B B" + g2* Wi, W, (5.14)

where we have used the relation Tr(c%¢?) = 259 Note that the covariant derivative
D, H can be written as

n 1 . a __a 1 .
DyuH = 0,H + 5igaW,io" H — Zigi B, H. (5.15)

5.4.3. Electroweak unification

It would be natural to require that the kinetic terms of the gauge fields, given by the
squares of the curvatures, are properly normalized. That is, we require that both
these squares of the curvatures have the coefficient i. This imposes the relations

%gﬁ = i and 5452922 = i (5.16)
This then means that the coupling constants are related by g2 = 3g;2. The values
of the coupling constants depend on the energy scale at which they are evaluated,
and their scale-dependence is determined by the renormalization group equations.
Let A,y be the scale at which the equality g2? = 3¢;2 holds. Our model of the
electroweak theory is then naturally defined at this scale Ay, and one could use
the renormalization group equations to “run down” this model to lower energies.
We will not provide the details here. Instead, we will discuss this renormalization
scheme for the full Standard Model in Sec. 8.

5.5. The Higgs mechanism

When writing down a gauge theory with massive gauge bosons, one encounters the
difficulty that the mass terms of these gauge bosons are not gauge invariant. The
Higgs field plays a central role in obtaining these mass terms within a gauge theory.
The Higgs mechanism provides a spontaneous breaking of the gauge symmetry. In
this section we will describe how the Higgs mechanism breaks the U(1) x SU(2)
symmetry and introduces mass terms for the gauge bosons.

From Proposition 5.4, we have obtained the Higgs Lagrangian Lp. If we
drop all the terms that are independent of the Higgs field H, we obtain the
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Lagrangian
. br oy 2afoh? = ef(0)
L9, Bu, Wy, H) = 2a2f(0)|H| - T(O)W|
1 1 ~
—s|H*+ =|D,H|*. 1
+ 55lH? + 51D, H] (5.17)

We wish to find the value of H for which this Lagrangian obtains its minimum
value. In order to simplify the following discussion, we shall from here on assume
that the scalar curvature s vanishes identically. We may thus consider the Higgs
potential

) = br? |H|4_2af2A2—ef(0)
 2a%f(0) af(0)
If 2af2A% < ef(0), the minimum of this potential is obtained for H = 0, and in this

case there will be no symmetry breaking. We shall now assume that 2a foA? > ef(0).
The minimum of the Higgs potential is then obtained if the field H satisfies

Epot(H |I‘I|2

2a° faA% — aef(0)

b2

The fields that satisfy this relation are called the vacuum states of the Higgs field.
We shall choose a vacuum state (v,0), where the vacuum expectation value v is a
real parameter such that v? is given by (5.18).

We want to simplify the expression for the Higgs potential. First, we note that
the potential only depends on the absolute value |H|. A transformation of the
doublet H by an element v € U(1) x SU(2) is written as H — wH. Since a unitary
transformation preserves the absolute value, we see that Lpot(uH) = Lpot(H) for
any u € U(1) x SU(2). We can use this gauge freedom to transform the Higgs field
into a simpler form. Consider elements of U(1) x SU(2) of the form

a —b

b a
such that |a|? + |b|> = 1. The doublet H can in general be written as (h1, ha), for
some hi,hs € C. We then see that we can write

hi\ _ (a b\ (|H] gt g he
)~ \o a)\o) “TmEy "TiH]

This means that we can always use the gauge freedom to write the doublet H
in terms of one real parameter. Let us define a new real-valued field h by setting
h(zx) := |H(x)| —v. We then obtain

v T a\xr —ﬁ
qu(x)( +é‘( >), (@) = ( (@) _()> (5.19)
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Inserting this transformed Higgs field into the Higgs potential, we obtain an expres-
sion in terms of the real parameter v and the real field h(x):
bf(0)

_ 4
Loor () = 550+ h) -

 2afeA* —ef(0)

5 (v+ h)2

b 2
= 2a27}(0) (R* + 4vh® + 6v2h? + 403h + v?)
- 2af2A2 — ef(O)
af(0)
Using (5.18), the value of v? is given by

2 2a% fo A% — aef(0)
b2

(h? + 2vh 4 v?).

We then see that in Lo the terms linear in h cancel each other. This is of
course no surprise, since the change of variables |H(z)| — v + h(x) means that
at h(x) = 0 we are in the minimum of the potential, where the first order deriva-
tive of the potential with respect to A must vanish. We thus obtain the simplified
expression

Lot (h) = ﬂ(h‘* + 4vh? 4 40%h% — ot). (5.20)

Pt 202£(0)

We now observe that the field h(x) has obtained a mass term and has two self-
interactions given by h® and h*. We also have another contribution to the cosmo-
logical constant given by —uv?.

5.5.1. Massive gauge bosons

Next, let us consider what this procedure entails for the remainder of the Higgs
Lagrangian L. We first consider the kinetic term of H, including its minimal
coupling to the gauge fields, given by

[—
Linin(By, Wi, H) := §|DMH| .
The transformation of (5.19) is a gauge transformation, and to make sure that L
is invariant under this transformation, we also need to transform the gauge fields.
The field B, is unaffected by the local SU(2)-transformation u(x). The transfor-
mation of W, = Wjo“ is obtained from Proposition 5.3 and is given by
Wy — uWyu™ — —ud,u™.
g2
One then easily checks that we obtain the transformation ﬁﬂH — uﬁuH , so that
|D, H|? is invariant under such transformations. So we can just insert the doublet
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(v+ h,0) into (5.15) and obtain
~ v+ h 1. 0 afv+h 1. v+ h
D,H =0, ( 0 ) + 5292W"U ( 0 ) - §Zngu ( 0 )
_ h 1. 1 0 1. 2 0
=0, <O> + 2192Wu <v N h) + 2zg2Wu <2(v N h))

1. 3 (v+h 1. v+ h
+ §ZQQWM < 0 ) — 51913# < 0 ) .
We can then calculate its square as
D, H|? = (D"H)'(D,H)
1
= (0"h)(0,.h) + ng(v + R (WHIW L + WHAW2 + WA
1 1
+ 1912(1) +h)’B"B,, — 59192(1) + h)QB”Wj’.

Note that the last term yields a mixing of the gauge fields B, and Wi’ The elec-
troweak mixing angle 6,, is defined by

g2 g1
/912 _|_922’ /912 + g2
Note that the relation g;2 = 3g;12 for the coupling constants implies that we obtain

the values cos? 6, =  and sin’ 6, = 3 at the electroweak unification scale Ay
Let us now define new gauge fields by

Cy = C0s0, = Sw = sinf, =

1 1
W, — W4 iw?), Wr .= Wl —iw?),
H \/i( " ;1,) " \/5( I p,) (521)
Zy, = cwwj—st#, A, = st[Z’—chBu.

We will show that the new fields Z,, and A, become mass eigenstates. The fields
Wﬁ and Wﬁ already were mass eigenstates, but the fields W, and W); are chosen
such that they obtain a definite charge. We can write

1 —1
1 _ * 2 *
I/Vu—ﬁ(WM—i-WM)7 W, —E(WM—WM),
Wi’ =swAuy+cwZy,  Bu= cwly—swly,

and inserting this into the expression for |5uH |2 yields
1, ~ 1 1
§|D#H|2 = 5(0"h)(9uh) + 1922(1) + h)*WHW,

1922 271

We thus see that the fields W,,, Wi and Z,, acquire a mass term (where Z, has
a larger mass than W, W) and that the field A, is massless. The masses of the
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W-boson and Z-boson are given by

My = =vgs, My = 1@9_2 (5.23)
2 cy

Remark 5.1. In the procedure described above we have assumed that the scalar

curvature s vanishes identically. Now suppose that the scalar curvature does not

vanish, and consider the full Higgs potential of (5.17). Since the scalar curvature

s is a function on M, the vacuum expectation value of this full potential will in

general not be a spacetime constant, and therefore we can no longer ignore the

kinetic term in the Higgs potential. The vacuum expectation value v will now be

given by the solution to the equation

—2afaA? +ef(0) 1 br?

)ote)

—S(@ —vx3: .
a0 T 128@ @)+ e =0

Unfortunately, this differential equation cannot be solved exactly, and this poses a
problem in applying the Higgs mechanism. In Sec. 7, we will propose a solution to
this problem, by invoking the conformal invariance of the spectral action.

1
—§DMD”v(x) + (

6. The Standard Model

One of the major applications of noncommutative geometry to physics has been
the derivation of the Standard Model of high energy physics from a suitably chosen
almost-commutative manifold [10, 18] (see also [27]). In Sec. 5, we have already
discussed the electroweak sector (for one generation) of the Standard Model. In
this section we will also incorporate the quark sector with the strong interactions,
and show that we obtain the full Standard Model.

6.1. The finite space

The first description of the finite space yielding the Standard Model (without right-
handed neutrinos) was given by Connes in [18]. A newer version of this finite space
was given in [10], where now the finite space has KO-dimension 6. This solved
the problem of fermion doubling pointed out in [60] (see also the discussion in
[27, Chap. 1, §16.3]), and at the same time allowed for the introduction of Majorana
masses for right-handed neutrinos, along with the popular seesaw mechanism.

In [10], the starting point for the finite space is a left-right symmetric algebra
A_.r- One then obtains a subalgebra Ap C A;; by requiring that Ap should admit
the Dirac operator Dg to contain an off-diagonal part. A discussion of how the
algebra A, occurs naturally is given in [69]. For the purpose of this section we will
not go into these details. Instead, we simply state the finite space that will be used.
Keeping in mind the previous sections and the fact that we now wish to obtain the
Standard Model, the choices below should not be too mysterious.

We take the finite space Fgys of Sec. 5.1 as our starting point. In order to
incorporate the strong interactions, we add the 3 x 3 complex matrices M3(C) to
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the algebra, and define
Ap :=CaoHa® M;(C).

We keep the Hilbert spaces H; = C* and H; = C* for the description of the leptons
and antileptons. For the quarks, we define H, = C* ® C?, where the basis of C*
is given by {upr,dr,ur,dr} and the three colors of the quarks are given by the
factor C3. Similarly, we also have the antiquarks in Hg. Combined, we obtain the
96-dimensional Hilbert space for three generations of fermions and antifermions:

Hr = (H & H; & Hq @ Hq) 2.

An element of the algebra A is given by a = (), ¢, m), where the quaternion ¢ can
be embedded into M3(C) as in (5.1). The action of an element a on the space of
leptons H; and the space of quarks H, is given just as in (5.2) by

A0 0 O
_ w |0 X 0 0
a_()\7q?m)—> O O a ﬂ bl
0 0 -3 @
A0 0 O
H, O X 0 0
a:()\,(Lm)_‘I) 0 0 a 6 ®H3
0 0 -3 a

For the action of a on an antilepton [ € H; we set al = Myl, and on an antiquark
7 € Hg we set a7 = (I4 ® m)q.

The grading and the conjugation operator are also chosen in the same way as
in Sec. 5.1. The grading vp is such that all left-handed fermions have eigenvalue
+1, and all right-handed fermions have eigenvalue —1. The conjugation operator
Jr interchanges a fermion with its antifermion. The Dirac operator D is again of

the form
S T*
T S/

The operator S is now given by

0 0 Y, 0
P G §
Yy 0 0 0
0 Y 0 0
0 0 Y, 0
SyoLi=sh = | " 0 0 e,
Y 0 0 0
0 Yy 0 0
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where Y,,, Y, Y, and Yy are 3 x 3 mass matrices acting on the three generations.
The symmetric operator T' only acts on the right-handed (anti)neutrinos, so it is
given by Tvr = YRUR for a 3 x 3 symmetric Majorana mass matrix Yz, and Tf = 0
for all other fermions f # vgr. Note that vg here stands for a vector with N = 3
components for the number of generations.

Proposition 6.1. The data
FSM = (»AF,HF,DFKYF,JF)

as given above define a real even finite space of KO-dimension 6.

Proof. The action of Ar on Hg, given by I4 ® m, commutes with all other oper-
ators, and hence it has no effect on the commutation relations. The proof is then
the same as in Proposition 5.1. m|

6.2. The gauge theory
6.2.1. The gauge group

We shall now consider the almost-commutative manifold M x Fj,,, and we wish to
describe the gauge theory corresponding to M x Fy,,. Let us start by examining the
subalgebra (Ap), of the algebra Ap = C & H @& M;(C), as defined in Sec. 2.3.1.
For an element a = (\,q,m) € C&H® M3(C), the relation aJr = Jpa* now yields
A=X=a=aand 3 =0, as well as m = A3. So, a € (./ZF)JF if and only if
a = (z,z,z) for x € R. Hence we find that

(«ZF)JF ~ R.

Next, let us consider the Lie algebra hr = u((Ap)s.) of (2.11b). Since u(Ar)
consists of the anti-hermitian elements of Ap, we again obtain as in (5.5) that the
cross-section hp = u((Ap),,) is given by the trivial subalgebra {0}.

Proposition 6.2. The local gauge group G(Fsy) of the finite space Fs, is given by
G(Foy) ~ (U(1) x SU(2) x U(3))/{1,—1}.

Proof. As in Proposition 5.2, we find that U(H) = SU(2), so the unitary group
U(Ap) is given by U(1) x SU(2) x U(3). The subgroup Hg = U((Ap);,) is again
given by Hp = {1, —1}. By Proposition 2.1, the gauge group is given by the quotient
of the unitary group with this subgroup. |

The gauge group that we obtain here is not the gauge group of the Standard
Model, because (even ignoring the quotient with the finite group {1, —1}) we have
a factor U(3) instead of SU(3). As mentioned in Proposition 2.2, the unimodularity
condition is only satisfied for complex algebras. In our case, the action of the algebra
C @ H @ M3(C) on the Hilbert space Hp is not complex-linear, since it involves
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complex conjugation. Therefore, the unimodularity condition is not satisfied. As in
[10, §2.5] (see also [27, Chap. 1, §13.3]), we shall now demand that the unimodularity
condition is satisfied, so for u = (A, ¢,m) € U(1) x SU(2) x U(3) we require

det |yp(u) =1 = (Adetm)™ =1.

For u € U(1) x SU(2) x U(3), we denote U = uJu.J* for the corresponding element
in G(Fs),). We shall then consider the subgroup

SG(Fyy) = {U = uJuJ* € G(Fy,) |u= (A, q,m), (Adet m)'? = 1}.

The effect of the unimodularity condition is that the determinant of m € U(3) is
identified (modulo the finite group g2 of 12th-roots of unity) to X. In other words,
imposing the unimodularity condition provides us, modulo some finite abelian
group, with the gauge group U(1) x SU(2) x SU(3). Let us go into a little more
detail, following (but slightly modifying) [10, Proposition 2.16] (see also [27, Propo-
sition 1.185]). The group U(1) x SU(2) x SU(3) is actually not the true gauge group
of the Standard Model, since it contains a finite abelian subgroup (isomorphic to)
e which acts trivially on all bosonic and fermionic particles in the Standard Model
(see for instance [70]). The group ue is embedded in U(1) x SU(2) x SU(3) by
A= (A, A%, 02). The true gauge group of the Standard Model is then given by

G :=U(1) x SU(2) x SU(3)/ -

Proposition 6.3. The unimodular gauge group SG(Fsy,) is isomorphic to

SG(Fon) = Gsu X p12.
Proof. We define the homomorphism p : SG(Fs,) — w12 by setting p(U) =
Adet m. The kernel of p is given by

Ker(p) = {U = uJuJ” € G(Foy)|u= (A q,m), \detm = 1}.
The homomorphism ¢ : U(1) x SU(2) x SU(3) — SG(Fey) is given by
e\, q.m) = (X, ¢, \T'm) J(N?, ¢, A" Tm) I
We observe that
p(e(N, q,m)) = p((A%, ¢, 7' m) J (X, ¢, A7 ') J)
= AN det(\'m) = detm = 1,

so that ¢ indeed maps into SG(Fsy), and we obtain that Im(p) = Ker(p).

The kernel of ¢ is given by all (), q,m) for which (A3, ¢, \"'m) = #1. This
implies that A3 = #1, and thus ¢ = A%, and m = A?I3. The requirement A3 = +1
implies \ € pg, so we obtain that Ker(p) = {(A, A3, A?)| X € ug} =~ ue. Hence, the
map @ : Ggy — SG(Fs,) induced by ¢ is an injective group homomorphism. Since

su =~ Im(¢) = Ker(p), we see that in fact G, is embedded as a normal subgroup
of SG(Fy,), and the quotient SG(Fsy)/Gsy is then isomorphic to Im(p) = p12. O
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6.2.2. The gauge fields and the Higgs field

Let us now derive the precise form of the gauge field A, of (2.13) and the Higgs
field ¢ of (2.14). The calculations are similar to those in Sec. 5.2.2, and the formulas
for A, and @, follow immediately from (5.7). The Higgs field ¢ is slightly different,
and is now given by

0 v 0 X-
o= (3 ) oh= (3 ) em =0 dhg=0  (6)

where, for ¢, ¢ € C, we now have

y_ (Vo1 “Yedr) o (Yudr —Yad
Yoo2 Yooy ) Yoo Yady )
The Higgs field ® is then given as in (5.9) by

¢ 0 ¢ 0\ .. S+¢ T
(I):DF+<O 0)+JF<O 0>JF:< T (S+¢)>a (6.2)

The biggest difference is the occurrence of a field Vli == —im0d,m’, acting on Hg,
for m,m’ € M3(C). Demanding V,; to be hermitian yields V| € iu(3), so V is a
U(3) gauge field instead of an SU(3) gauge field. As mentioned above, we need
to impose the unimodularity condition to obtain an SU(3) gauge field. Hence, we
require that the trace of the gauge field A, over Hr vanishes, and we obtain

Trlp(Auly) + Trlpp(L @ V) =0 = (V) = —A,.

So, we can define a traceless SU(3) gauge field V,, by V, := _V;i — %Aw The gauge
field A,, is thus given by

A, 0 A, O
Aulno =10 —A, o Al =10 —A, ® I,
Qu Qu
— 1
A#|'H7 = A#H4a A#|'H7 =-L® (Vﬂ + gAﬂ)a

for a U(1) gauge field A, an SU(2) gauge field @), and an SU(3) gauge field V,,.
The action of the field B, = A, — JrA,J," on the fermions is then given by

0 0

Buln, = [0 —24, :
Qu - AuH2
4
gA#Hg +V, 0 (6.3)
2
B/_L|Hq - O —gAu]Ig + Vp,

1
(QM + g&ﬂb) @I+ eV,
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Note that the coefficients in front of A, in the above formulas, are precisely the
well-known hypercharges of the corresponding particles, as given by the following
table:

Particle ‘VR er Vv e ur dr up df
4 2 1 1

L R N

Hypercharge

Proposition 6.4. The action of the gauge group SG(M X Fs,) on the fluctuated
Dirac operator

Dy=DRI4++4" @B, +7:®
1s implemented by

Ay — Ay — ix\@MX, Qu — qQuq* —iq0.q”", Vﬂ — mV#m* —imo,m”,

¢1+1 v (o1 +1
( 2 )ﬁ)\q< 2 )
for e C*(M,U(1)), g € C=(M,SU(2)) and m € C=(M,SU(3)).

Proof. The proof is similar to Proposition 5.3. Let us write v = (A, ¢,m) €
C*(M,U(1) x SU(2) x SU(3)). The term uAu* now not only replaces @, by
qQ.q*, but also VU by mvum*. Secondly, we see that the term —iud,u* is given
by —i)\aux on vg, ug and Hy, by —z’Xa,ﬂ\ = MaﬂX on er and dr, by —igd,q" on
(vr,er) and (ur,dr), and finally by —imd,m* on Hg. We thus obtain the desired
transformation for A, @, and Vﬂ. The transformation of ¢ is exactly as in Propo-

sition 5.3. ]

6.3. The spectral action

In this section we will calculate the bosonic part of the Lagrangian of the Standard
Model from the spectral action. The general form of this Lagrangian has already
been calculated in Proposition 3.4 so we only need to insert the expressions (6.2)
and (6.3) for the fields ® and B,,. As in Sec. 5.3, we first start with a few lemmas,
in which we capture the rather tedious calculations that are needed to obtain the
traces of F,, F*, ®2, ®* and (D,®)(D"®).

Lemma 6.1. The trace of the square of the curvature of B,, is given by

Tr(F,y F™) = 24 (?AWA’“’ T (Qu Q™) + Tr(VWV’“’)) .

Proof. The lepton sector yields the same result as in Lemma 5.1, only multiplied
by a factor 3 for the number of generations. For the quark sector, we obtain on H,
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the curvature
4
gA,u,]Ig + Vi 0

2
F,uu|7-(q = 0 —gApyHS + V,uu ’

1
<Quu + §AMUH2) & ]I3 + HQ & V[U/

where we have now defined the curvature of the SU(3) gauge field by
Viw = 0,Vy — 0,V +1i[V,,, Vo ].

If we calculate the trace of the square of the curvature F),,, the cross-terms again
vanish, so we obtain

16 4 1
Tr|s, (Fyu F*) = ( Stz Tyt ) Ay AP

+3Tr(Q Q") + 4Tx(V,,, V).

We multiply this by a factor 2 to include the trace over the antiquarks, and by
a factor 3 for the number of generations. Adding the result to the trace over the
lepton sector, we finally obtain

Tr(Fl F*™) = 80A AP + 24Tr(Q,, Q™) 4 24Tr(V,,, V). O

Lemma 6.2. The traces of ®> and ®* are given by
Tr(®?) = 4a|H'|* + 2,
Tr(®*) = 4b|H'|" + 8e|H'|> + 2d,

where H' denotes the complex doublet (¢1 + 1,¢2) and, following [10] (see also
(27, Chap. 1, §15.2]),

0 =Tr(Y Y, + Y'Y, + 3Y"Y, + 3Y;Yy),

b=Tr((Y,Y,)? + (YYe)? + 3(YYa)® + 3(Y Ya)?),

=Tr(YrYr), (6.4)
Tr((Y3YR)%),

Te(YLYRYY,).

d

Proof. The proof is analogous to Lemma 5.2, where the coefficients a, b, ¢, d, e have
now been redefined to incorporate the quark sector, and the trace is taken over the
generation space. |
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Lemma 6.3. The trace of (D, ®)(D*®) is given by
Te((D,®)(D"®)) = 4a| D, H'P?,

where H' denotes the complex doublet (p1 + 1, ¢2), and the covariant derivative lN)#
on H' is defined as

DyH' = 0,H' +iQ%0"H' — i\, H'.

Proof. The proof is as in Lemma 5.3. Since ® commutes with the gauge field V,,
this gauge field does not contribute to the covariant derivative D,,. O

Proposition 6.5. The spectral action of the AC-manifold M X F), defined in this
section is given by

D _
te(£(52)) ~ [ 2o M Qe Vi Il + 000,
for the Lagrangian

L(Gpvs My Qus Vi H/) = 96Las(gpv) + La(Np, Qu, Vi) + L (Gpws My Qs Hl)~

Here Ln(gu) ts defined in Proposition 3.3. The term La gives the kinetic terms
of the gauge fields and equals

LAl @y Vi) 1= % (?Aw/\’” + Tr(Qu.Q™) + Tr(VWV"”)> :

The Higgs potential Ly (ignoring the boundary term) gives

bf(0 —2afaA? +ef(0
L0 A Qu 1) = D s 2R 4T, e
cfoA?  df(0)  af(0) 0
2 * 472 * 1272 sIH'|
cf(0)  af(0) ~ o2
+ 247r23+ o2 |D,H'|*. (6.5)

Proof. We will use the general form of the spectral action of an almost-
commutative manifold as calculated in Proposition 3.4. The gravitational
Lagrangian £); now obtains a factor 96 from the trace over Hp. From Lemma 6.1
we immediately find the term L£4. For the newly defined coefficients a, b, ¢, d, e of
(6.4), the Higgs potential has exactly the same form as in Proposition 5.4. O

6.3.1. The coupling constants and unification

The SU(3) gauge field V,, can be written as V,, = Vlf)\i, for the Gell-Mann matrices
! and real coefficients Vlf. As in Sec. 5.4.2, we will introduce coupling constants
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into the model by rescaling the gauge fields as
1 a a % 1 i
A= 5913;“ Q= —Q2W V.= 593(;,,

By using the relations Tr(c%¢®) = 26% and Tr(A*M) = 26%, we now find that the
Lagrangian £ 4 of Proposition 6.5 can be written as
Ca(Bu Wi Gp) = L (2028, B 4 2 W, W 4 452G, G
A\DPps W, Gp) = 22 391 nv 92 nv 93 N2 .

It is natural to require that these kinetic terms are properly normalized, and this
imposes the relations

fO) 5 fO) 5 5f(0) 5, 1

2 ~om? =g T § 00
The coupling constants are then related by

2 2 9

g3 = g2 2591,

which is precisely the relation between the coupling constants at unification, com-
mon to grand unified theories (GUT). We shall discuss this further in Sec. 8.2.
By rescaling the Higgs field H' — H as in (5.13), we obtain the following result:

Theorem 6.1. The spectral action (ignoring topological and boundary terms) of
the AC-manifold M x Fg, is given by

_ [ (8RAY chN df(0)  (cf(0) 4NN 31(0)
o = /M ( 2 + 472 + Ur2 g2 s 1072 CuvpsC
1 b2
_ 1224 ”ra ”r;wa q uyl 4
TP BTy * 4GWG 242 f(0) 1]
2af2A2 —ef(0) 9 1 5 1 ~ ) .
— = |H|+ —=s|H|* + - |D,H* |/ )
af(0) [H "+ 125| "+ 2| nH| lgld*x

6.4. The fermionic action

In order to obtain the full Lagrangian for the Standard Model, we also need to
calculate the fermionic action Sy of Definition 2.7. First, let us have a closer look
at the fermionic particle fields and their interactions.

By an abuse of notation, let us write 1,7, e*, & uAc,ﬂ’\c,dkc,E/\c for a set
of independent anticommuting Dirac spinors. We then write a generic Grassmann

vector §~ € Hj} as follows:
E=1} @V + RV +TR RV + T} QU
tel@el tepDept+ep@er +8) @)
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+ U @u)C + U QU + Y QU + W @ upE

s v Ve o

+d} @A +dY @dY +dy @d)¥ +d; @dY,
where in each tensor product it should be clear that the first component is an anti-
commuting Weyl spinor, and the second component is a basis element of Hp. Here
A = 1,2,3 labels the generation of the fermions, and ¢ = r,g,b labels the color
index of the quarks.

Let us have a closer look at the gauge fields of the electroweak sector. For the
physical gauge fields of (5.21) we can write

1

1
1 :n2 _ 112 _ *
Qu + ZQH - 7§QQan Qﬂ - ZQ;L — ﬁg?w‘uv
g2 1 1 54,292
Qi — Ay = EZ/M Ay = §3w92Au - §TZM7
—Q% Ay = —sugaA, + 2972(1 —2c42)2,, (6.7)
1 2 g2
Qi + gAM = gswg?Au — a(l — 4Cw2)Zu,7

9

Sos (1+2c*)Z,.

1 1

—Qi + gAM = _§3w92Ap, —

We have rescaled the Higgs field in (5.13), so we can write H = —”aﬂf(o)(ébl +

1, ¢2). We shall parametrize the Higgs field as H = (v + h +i¢, iv/2¢™), where ¢°

is real and ¢~ is complex. We write ¢ for the complex conjugate of ¢~. Thus, we
can write

T

af(0)

As in Remark 4.2, we will need to impose a further restriction on the mass

(b1 +1,¢0) = (v+h+id°,ivV2¢7). (6.8)

matrices in Dp, in order to obtain physical mass terms in the fermionic action. From
here on, we will require that the matrices Y, are antihermitian, for x = v, e, u,d.
We shall then define the hermitian mass matrices m, by writing

vaf(o
Y, =: —iAmz. (6.9)
™
Similarly, we shall also take Yr to be anti-hermitian, and we introduce a hermitian
(and symmetric) Majorana mass matrix mpg by writing

YR = —1 meg. (610)

Theorem 6.2. The fermionic action of the almost-commutative manifold M X Fl),
18 given by

SFZ/ (ﬁkm-i-ﬁgf-i-ﬁHf-i-ﬁR)\/ |g|d4x.
M
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We suppress all generation and color indices. The kinetic terms of the fermions are
given by

Liin = —i(JuT, ’y”Vﬁy) —i(Jyme, ’y”Vﬁe) —i(Jum, V”Vﬁu) —i(Jpd, V”Vﬁd).

The minimal coupling of the gauge fields to the fermions is given by
_ 2 _ 1 —
Cor = sugnd (- rve) + S0 ) (Tl 0#))

n ﬂzu(w,wu ) + (g v (Asu® — 1 — 75)e)

4y,

+ (JMH, o (—gst +1 +'y5) u) + <JME, 7“(§3w2 —1- 75) d))
29} (o, Y (1 +75)0) + (Tard, 7" (1 + 5)u))

+ F o (Ju?, Y (1 +v5)e) + (S, v (1 + 75)d))

93 ~i — =
+ ESGM((JMWMW) + (Jard, v Nid)).
The Yukawa couplings of the Higgs field to the fermions are given by

h _
['Hf = i(l + ;) ((JM?, ml,y) + (JME, mee) + (JMﬂ, muu) + (JMd, mdd))

0 p—
+ 7((']1\4?’ ’757774,1/) - (‘]Méa ’757’77466) + (JMﬂa ’75muu) - (JMda ’75mdd))

¢,
\/_v
¢+
\/_v
qSi
\/_v

¢+
\/_v((JMU ;Mo (1+75)d) — (Ja, ma(l — v5)d)).

((Jare, me(l +75)v) = (T, mu (1 = 75)v))
(Jn7,my (1 +y5)e) = (Ju7,me(1 =75 )e))

((Jard, ma(1 +y5)u) = (Jard, mu(1 = 75)u))

The Majorana masses of the right-handed neutrinos (and left-handed anti-
neulrinos) are given by

Lr = i(Juvr, mrvr) + i(JuVL, MRVL).

Proof. The proof is similar to Proposition 4.6, though the calculations are now a
little more complicated. From Definition 2.7, we know that the fermionic action is
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given by Sp = %(Jg, D A§>, where the fluctuated Dirac operator is given by
Da=DRI+~4"® B, + 7 ® .

We rewrite the inner product on H as (£,) fM &) \/|g |d*z. As in Proposi-

tion 4.6, the expressions for J& = (Jay ® Jp)€ and () ® ]I)f~ are obtained straight-

forwardly. We will use the symmetry of the form (Jy;X, [2v), and then we obtain
the kinetic terms as

SUE (D @DE) = (Ju?, D) + (e, D)

-\
+ (JMﬂAC, mukc) + (JMd c, lﬁdkc).
The other two terms in the fluctuated Dirac operator yield more complicated expres-

sions. For the calculation of (y* ® Bﬂ)g , we use Eq. 6.3 for the gauge field B,,, and
we can insert the expressions of (6.7). As in Proposition 4.6, we now use the anti-

symmetry of the form (JasY, W“z’/;). For the coupling of the fermions to the gauge
fields, a direct calculation then yields

SUE (0 @ B)E)

2 1 —=Ac
= Swga Ay < — (Juet, yret) + g(JMﬂ’\Cﬁ“u’\c) - g(JMd ﬁudkc))

+ g2y ((JMvA,w”(l +98)7%) + (e, " (4sw” = 1= y5)e?)
—\c¢ 8 2 e —Ac 4 2 Ac
+ [ Jpue,y* —g35w +F 14y ) ) + (Jud A" 350 —1—s]d
—\c
+ == 2\/— W (I (L4 3s)) + (Jud (14 75)u’)
+ mW,f((JMvM“(l +75)et) + (Jn@e, (1 + v5)d*))

% c — c —Ad c
+ DEXN (I ) + (Ind 7)),

where in the weak interactions the projection operator %(1 + 7v5) is used to select
only the left-handed spinors.

Next, we need to calculate %(Jg, (75 ® @)E) The Higgs field is given by & =
Dp + ¢ + Jrp¢pJ}, where ¢ is given by (6.1). Let us first focus on the four terms
involving only the Yukawa couplings for the neutrinos. Using the symmetry of the
form (JarX, 75{/?), we obtain

1 —K K 1 K K —
§(JMVR,75YV Moy + Dvg) + §(JMVRa75YV/\ (¢ +1)73)

1 K —K\ ,— _
(JMVL775Y "¢y + Dp) + §(JMVL»W5YU (¢, + 1)71)

l\DI»—~

_>\K) —_
= (JuT5, 1Y, (o1 + D) + (JuT, 75, (1 + 1)vp).
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Using (6.8) and (6.9), and dropping the generation labels, we can now rewrite

(JMTR, VYo (01 + V)vr) + (JuPL,v5Y o (61 + 1)vr)
h 0
= z’(l + ;) (Juo,myv) — %(JME Y5y V).

For e, u, d we obtain similar terms, with the only difference that for e and d the sign
for ¢ is changed. We also find terms that mix the neutrinos and electrons, and by
the symmetry of the form (JusX,v51), these are given by the four terms

V2

T(¢_(JM6L»meVL) + ¢" (JuPrL, myer)

— ¢~ (Jue€r, myvr) — ¢ (JMuTR, meeR)).

There are four similar terms with v and e replaced by w and d, respectively. We
can use the projection operators %(1 =+ 7v5) to select left- or right-handed spinors.
Lastly, the off-diagonal part 7" in the finite Dirac operator D yields the Majorana
mass terms for the right-handed neutrinos (and left-handed anti-neutrinos). Using
(6.10), these Majorana mass terms are given by

(Javr, v5YrVR) + (Ju¥L,vs5Y rVL) = i(Jyuvr, mevr) + i(JuTL, mevL).

We thus obtain that the mass terms of the fermions and their couplings to the
Higgs field are given by

LR (5 2 9)9)
= i(l + %) (Jn?, muv) + (Jare, mee) + (Jat, myu) + (Jard, mad))

0 p—
+2 — (I, ysmuv) = (Jae, ysmee) + (Jut, ysmaw) — (Jard, 15mad))

\/—v ((JMB me(1 +v5)v) — (Jare, my (1 —v5)v))
¢+

+ 5o (a7 (14 35)e) = (Tar, me(1 = 15)e)

\[U(( Tard, ma(L+75)u) = (Jard, ma (1 = v5)u))

¢+
\/_v

+i(Jpvr, mrVR) + ((JMuTL, MRTL),

(S, m (1 +75)d) — (JmT, ma(l = v5)d))

where we have suppressed all indices. O

In Theorems 6.1 and 6.2, we have calculated the action functional of Defini-
tion 2.7 for the almost-commutative manifold M x F, defined in this section.
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However, we should still check whether this action coincides with the action of the
Standard Model. This comparison has been worked out in detail in [10] (see also
[27, Chap. 1, §17]), and it confirms that our almost-commutative manifold indeed
yields the full Lagrangian of the Standard Model (with neutrino mixing and see-saw
mechanism).

7. Conformal Invariance

In this section, we shall first briefly introduce conformal transformations, and sub-
sequently discuss the conformal invariance of Weyl gravity. We then introduce the
idea of conformal symmetry breaking in the context of a single real-valued scalar
field conformally coupled to gravity. Next, we shall explicitly calculate the confor-
mal transformation of the asymptotic expansion of the spectral action for a general
almost-commutative manifold, and show that it is invariant up to a kinetic term of
a dilaton field, similar to what was found in [71]. Subsequently, we shall use this
conformal invariance to revisit the Higgs mechanism discussed in Sec. 5.5.

7.1. Conformal invariance
7.1.1. Conformal transformations

A conformal transformation of the metric is given by g, — G = 22g,,, where
Qe C°(M,R") is a smooth, strictly positive function. Note that this transforma-
tion does not change the coordinates x* of M, but only the metric.

The Riemannian curvature and its derived tensors are completely determined
by the metric g,,. Using the conformal transformation of the metric, an explicit
calculation will show that the transformed scalar curvature s, corresponding to the
transformed metric g, is given by [72, Appendix D]

5=072(s —2(m —1)V’Vs(InQ) — (m — 1)(m — 2)VP(InQ)V4(InQ)), (7.1)

where V is the Levi-Civita connection for the metric g,,,. Particularly interesting is
the Weyl tensor C*, ,,, which is seen to be conformally invariant (for more details,
see [72, Appendix D).

7.1.2. Conformal gravity
We define the Weyl action by

Swlg] == /M C’WPUC'“”””\/|g|d4x.

We will show in the next proposition that this Weyl action is conformally invariant,
and for this reason it is also called the action of conformal gravity.

Proposition 7.1. In the case dim(M) = m = 4, the Weyl action is conformally
tmvariant.
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Proof. As mentioned before, we know that the Weyl tensor is conformally invari-
ant. However, since the metric does transform under conformal transformations,
this invariance depends on the position of the indices. We can calculate that

éﬁwm = guaéa po — QQgWC’O‘VpU = QQC}WPU'

v
Similarly, since g = Q~2g*”, we have
épvpa — Q—chvpo"

The determinant |g| of the metric can be written as |g| = €77 g1,92093p945, SO We
see that |g] = Q%|g|, and hence that +/|g| = Q*1/|g|. Combining this we find that

Corvpe C'P7 /1] = Q%Clpe Q7 8CH P2 Q49| = Crvpoe C*P7 /19l O

7.2. Conformal symmetry breaking

Consider a real-valued scalar field ¢ transforming as ¢ — Q~'¢. The most general
invariant action for ¢ is:

(g 8) = [ (5(0,0)(0°0) + 1550 420" ) Vgl

Note that there is no (tachyonic) Higgs mass term —pu?¢?.
Suppose we have a constant s < 0 and A > 0. The potential %ng)z + A¢* then
obtains a minimum for ¢ = v satisfying

1 —s

— 22 =0 = vP=_—".

PR YT o
If on the other hand the scalar curvature is not a constant, then the vacuum expec-
tation value v would also no longer be a constant. Therefore we can no longer
ignore the kinetic term in the Higgs potential. We thus have to consider the full
Higgs potential

L= 5(0,6)(0"6) + 7556° + A*

The extremal points of this Lagrangian are obtained for a vacuum expectation value
v given by the solution to the equation

—%(%8“1} + %sv +2x% = 0.
Unfortunately, this differential equation cannot be solved exactly, so we are unable
to find an exact solution for the vacuum expectation value. However, this problem
can be avoided by invoking the conformal invariance of the Higgs potential. A good
treatment of such a spontaneous breaking in the case of conformal gravity with
a conformally coupled scalar field can be found in [73]. For this purpose, we now
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perform a conformal transformation for a conveniently chosen Q(x) = +/s(x)/so
for some constant sg. The Higgs potential is then transformed into
5 _ L= 5= L = 4
L— L= 5(8u¢)(8“¢) + Es()(b + Ao~
Since we now have a constant scalar curvature sg, we can ignore the kinetic term
and easily solve for the minimum of this transformed potential. We then find a
vacuum expectation value vy given by
2 _ —50
=50
We shall now introduce a new variable h by writing

o(x) = Qx) ™ (vo + ().

This transformation spontaneously breaks the conformal invariance of the
Lagrangian, which results into the broken Lagrangian

Vo

1 1
‘C(g;un h) = §(auh)(8“h) + E(UO + h)280 + )\(’Uo + h)4

1
= 5(8Mh)(8“h) + (b + dvoh® + dv®h? — vot).

Remark 7.1. Under the assumption that ¢(z) # 0, there is an alternative
approach to the spontaneous symmetry breaking of the conformal invariance (see,
e.g., [74]). Namely, we can then choose the conformal transformation Q(z) =
() /o for some constant ¢y. The Lagrangian in this case becomes
b’
E(g#y) = HS + )\d)04.

Hence with this alternative transformation we recover the usual Einstein—Hilbert
Lagrangian for gravity including a cosmological constant, and the scalar field ¢ has
completely disappeared.

7.3. Conformal transformations of the spectral action

The scale invariance of the spectral action has been discussed by Chamseddine and
Connes in [71]. In their approach, the constant cut-off scale A in the definition of the
spectral action (see (2.23)) is replaced by a dynamical scale Ae", thus introducing
a dilaton field n. In this section we will not discuss the general approach of [71],
but we only focus on the asymptotic expansion of the spectral action for an almost-
commutative manifold. We will explicitly show that this asymptotic expansion is
invariant under conformal transformations.

Under a conformal transformation given by € C°°(M,RT), we will let the
fields B,, and ® of (2.16) and (2.17) transform as

B,=B,, ®=0Q7'd.

The spectral action depends on the choice of the cut-off scale A, and it is no sur-
prise that a conformal transformation should also affect this cut-off scale. We thus
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transform the constant A into a dynamical scale given by
A=0Q7A

Proposition 7.2. A conformal transformation of the spectral action of an almost-
commutative manifold (cf. Proposition 3.4) yields (ignoring boundary terms) the
Lagrangian

IS N Q7202
E(g,“,, B;u (I),A) = ﬁ(guua Bua (P7 A) + Tv (Q)Vﬂ(Q) V |g|

Proof. We shall calculate the conformal transformations of the different terms in
the Lagrangian separately. We shall ignore topological and boundary terms and use
(3.19) for L. We then find that

Q4A
M G VI = 2 gt

faA72A% _ f(0 Voo
‘%ﬂrﬂwm‘ﬁﬁﬂmwp“%

where we have used the conformal invariance of the Weyl action (cf. Proposi-
tion 7.1). Inserting the formula for § given by (7.1), we obtain several extra terms,
and we have

Lt G M)V

= Lar(g A) m+b

(VAV5(In Q) 4+ VA (In Q) V5 (In 2))+/]g].

On the second line, the first term is a total divergence and yields a boundary term,
which we will ignore, and the second term can be rewritten as

VA(InQ)Vs(In Q) = Q 2V (Q)V4(Q).

Hence we obtain (ignoring the boundary term)

1 G VT = L1 gy VT + 25 07299(2) ()]

Since the gauge field B, does not transform, neither does F),,. However, we do
have

ﬁv,uu _ g,uozgl/,@ﬁaﬁ _ Q_4g#aguﬁFaﬁ — O A

From this we find that the kinetic term of the gauge field remains invariant under
conformal transformations:

Lz(B)V3| = ﬁglﬁ(FMQ*‘*F“”)Q‘*\/E = Ls(B)V9l-

We shall split Ly into two parts, and we shall write £; for the Higgs potential
(ignoring the boundary term) and Lo for the kinetic term and the minimal coupling
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to the other fields. The Higgs potential £; transforms as
L1(®,A)/]g] = ]02(;721\ 0292 94\/_+ Q400 /g|
f 2 Tr(@*) /9] = £1(®,A)V/]g]-

@2

For the last part of the Lagranglan we have

L B DV = L5 (020700 gl

+ %Tr((ﬁﬂﬁ_lé)(ﬁ“Q_lfI)))Q‘l\/@.

The first term is given by

ggl'gn(sﬂqﬂ)m\/@ _ (Ol sTr(@%)\/]g]
_ 1)

872

= (VPV5(InQ) + VA (In Q) V5 (In Q) Tr(9?)/]g]-
We shall rewrite
VAV5(InQ) = VA(Q7V5(Q) = —Q 2V (Q)V5(Q) + Q71 VAV4(Q)
and
VA(InQ)Vs(In Q) = Q2VP(Q)V5(Q),

and obtain

fO) 202104 Q) 2
Tr(Q™=0)Q = Tr(®
T 280 o] = 2 sT(@) ]
f0) -
52 O VIV T @) gl

D,, has been defined in Proposition 3.1 by D,,® = [V/7, ®]. The transformation
of VE is determined by the transformation of V, and it only yields new terms which
commute with ®. Therefore we can conclude that D,, = D,,, and D* = Q2D*.
From this we find that
D, '® = Q (D) + (9,07 1)®.

We then find that the second term of Lo decomposes as

%Tr((zm*@)wm*@»mm
_ %mwmw%»m
+% (0,071 Tr(D @) /[g] + gﬂ%mﬂxauwlm@%%@-
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Note that Tr([B*, ®?]) = 0 by the cyclic property of the trace, so that Tr(D*®?) =
Tr(9*®?). Combining both terms of L2, we see that

£2(§uua Eua (5) V |§|

= Lagu B 99 - @ﬂ—lvﬂw(mn@%m
- % 19,Q)Tr(0" 2 W+ 2 072(9,0)(0"Q)Tr(®2)/]g].

By using the fact that Vg f = dgf for functions f € C*(M), we note that
VA IV5(Q)Tr(9?)) = —Q720°(2)95(Q) Tr(?)
+ QA H(Q)Tr(D?) + Q7 105(Q) Tr (0P 8?),

and thus we can conclude that

LG B BV = Lo B ©)Ig] ~ L0099 (@19 5 1e@%)) ]

Ignoring this boundary term, we see that Lp is invariant under conformal trans-
formations. |

Remark 7.2. Let us write the conformal scaling factor as 2 = €. We can then
write the transformation of the Lagrangian as

LG, By ®, MV3] = L9, By, ®, M)/ g] + A2 (0°n)(9sm)V/|g]-

So the only effect of the conformal transformation is that we obtain in the
Lagrangian the kinetic term (9°1)(9sn) of a dilaton field 7.

7.4. The Higgs mechanism revisited

In Sec. 5.5, we have discussed the Higgs mechanism for the Glashow—Weinberg—
Salam model under the assumption that the scalar curvature s vanishes identically.
If the scalar curvature does not vanish, we gain an additional term in the Higgs
potential given by the conformal coupling s|H|?. Since the scalar curvature s is a
function on M, the vacuum expectation value of this full potential will in general
not be a spacetime constant, and therefore we can no longer ignore the kinetic term
in the Higgs potential. The vacuum expectation value v will now be given by the
solution to the equation

—2afaA? +ef(0) 1 br?
af(0) + 123(x) v(z) + a2 1(0)
Unfortunately, this differential equation cannot be solved exactly, and this poses a

problem in applying the Higgs mechanism. However, as in Sec. 7.2, we can avoid this
problem by invoking the conformal invariance of the spectral action. Thus, let us

—%DMD“v(x) + ( v(z)® = 0.
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perform a conformal transformation for a conveniently chosen function Q(z). This
transformation needs to be such that the coefficients in the above equation become
constants. Before we continue, consider the effect of a conformal transformation
given by Q(x) on the field ®, which transforms as

_[(S+e T ot (97N @)(S +9) Q Y(x)T*
‘P—< T (S+¢)> ¢ ("3)@‘< Q1 ()T Q—l(x><s+¢>>'

The rescaling of S + ¢ is given by the rescaling of the doublet H — Q(z)"'H.
However, the conformal transformation also affects the off-diagonal part T' (which
gives the Majorana mass for the right-handed neutrinos) and hence it affects the
constants ¢, d and e of (5.11). So, when performing a conformal transformation,
these constants must be transformed accordingly.

We now choose the conformal transformation given by

Q(z) = \/M _ is(x)gm

af(0) 12

where Qg is some arbitrary constant. For the transformed v(z) = Q7 (x)v(z) we
then obtain the equation
br?

—Q7%0(x) + ——=0(z)® =
Q0 ( )+Cl2f(0) ( ) 07

and the solution to this equation yields the constant vacuum expectation value

a/f(0)
Vg = —=———.
Vb Qo
Note that, because of the freedom we have in choosing €2y, we are free to take vy = 1
through a global conformal transformation. However, for clarity we will simply leave
v as it is, without specifying its value.

Remark 7.3. The minimum of the Higgs potential is obtained for a non-vanishing
Higgs field if and only if 2af,A? — ef(0) — $af(0)s(z) > 0. When $af(0)s(z) >
2afaA%2—ef(0), the total coefficient in front of | H|? becomes positive, and hence the
minimum of the Higgs potential is obtained for H = 0. So, when the scalar curvature
s becomes large enough, there will be no spontaneous symmetry breaking. A varying
scalar curvature can thus cause a transition from a broken to an unbroken theory.
This is interesting in the context of cosmological applications of the spectral action,
as studied for instance in [23-26].

Theorem 7.1. The (gauge and conformal) transformation of the Higgs field, given
by
H =0 (2)u(z) (”0 +Oh(x)> . h(x) = Q)| H(z)| — vo, (7.2)
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breaks both the gauge symmetry and the conformal symmetry. The resulting spon-
taneously broken bosonic action (ignoring topological and boundary terms) of the
Glashow—Weinberg—Salam model is given by

SB :/ <4f4A4 _ Cf2A2 T df(O) - b7T2 4
M

w2 2 472 2a?f(0) o
Cf(O) . f2A2 - f(O) nvpo
< 2am2 3z )8 apgaCmeeC

1 1 f2A?
—B,,B* + W W 4 = (9%9)(
+ 4 12 + 4 % + 37_(_2 ( 77)( 57])

2
+ %(auh)(auh) b 3o g+ Aok + )
+3922(v0+h) WH W, +%—(v +h)?2Z1Z >\/|g d*z.

Here we have introduced the dilaton field 1 by setting Q(z) = €"®) | as in Remark 7.2.

Proof. As has been shown in Proposition 7.2, the full Lagrangian Ly (when inte-
grated over M) is conformally invariant. Thus, we can simply replace H by the
doublet (vo + h(z),0) in the formula for £x given in Proposition 5.4. Using the
rescaling of the Higgs field of (5.13), the Higgs potential and the Higgs kinetic
term are then rewritten as in (5.20) and (5.22). For the gauge kinetic terms, we use
(5.14) and impose the relations (5.16). The gravitational Lagrangian £, of Propo-
sition 5.4 obtains a kinetic term for a dilaton field 7 by Remark 7.2. Combining all
terms then proves the proposition. O

Remark 7.4. In the Higgs Lagrangian Ly, as given in Proposition 5.4, there is one
term proportional to s|H|?. One might expect that after the spontaneous symmetry
breaking this would yield a contribution to the Einstein—Hilbert Lagrangian in the
form of svy?. However, this is not the case, since this term combines with the other
terms proportional to vo2, and then their coefficient is also seen to be proportional
to vp2. In this way, we are only left with the constant term
contributes to the cosmological constant.

Furthermore, after the conformal transformation there also remains no coupling
between the Higgs field h and the scalar curvature s, since this coupling has been
absorbed into the mass term vo2h2. Hence, the term s|H|? has completely disap-
peared from the action.

2 .
- 2;;#%7)04 y which

7.4.1. The Higgs mechanism for the Standard Model

The above approach for the conformal symmetry breaking of the Glashow—
Weinberg—Salam model generalizes straightforwardly to the description of the full
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Standard Model of Sec. 6. In exactly the same way as in Theorem 7.1, we can now
rewrite the spectral action of Proposition 6.5, and obtain the following result.

Theorem 7.2. The spontaneously broken bosonic action (ignoring topological and
boundary terms) of the Standard Model is given by

g / (48f4A4 e df(0)  be?
M

2 2 42 2a2f(0) Yo

n cf(0)s 4fyA?s B 3f(0)c

uvpo
2472 w2 1072 ppoC
1 4502

+ ZBWBW + - W“ WHva 4 4G:WG’“” ]:32 (8577)(8[377)
1 m b 4 3 272

1 1 go2
+ 392%(v0 + h)PWH WY, +8g (vo + h) Z“Z>\/|gd4

8. Phenomenology

In Theorems 6.2 and 7.2, we have derived the full Lagrangian for the Standard
Model from the almost-commutative manifold M x Fy,. The coefficients in this
Lagrangian are given in terms of:

the moments f(0), fo and f4 of the function f in the spectral action;

the cut-off scale A in the spectral action;

the vacuum expectation value vy of the Higgs field;

the coefficients a, b, c,d, e of (6.4) determined by the mass matrices in the finite
Dirac operator Dp.

We can find several relations among these coefficients in the Lagrangian, which
we shall derive in the following section. Inspired by the relation g3 = go2 = % 12
obtained from (6.6), we will assume that these relations hold at the unification scale.
Subsequently, we will use the renormalization group equations to obtain predictions
for the Standard Model at ordinary energies. For the first part, we mainly follow
the same outline as in [10, §5] (see also [27, Chap. 1, §17]). We then incorporate
also the running of the neutrino masses as in [75].

8.1. Mass relations
8.1.1. Fermion masses

Recall from (6.9) that we have defined the mass matrices m, of the fermions by
rewriting the matrices Y, in the finite Dirac operator Dp. Inserting the formula
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(6.9) for Y, into the expression for a given by (6.4), we obtain
af(0)

a = P Tr(m;m, +mime + 3m;m, + 3mimg),

which yields

22

J0)”

From (5.23) we know that the mass of the W-boson is given by My = %Uogg. Using
the normalization equation (6.6), which expresses g2 in terms of f(0), we can then

Tr(m;my, + mime + 3m;my, + 3mimg) =

write

o ’]T2’l)02
0= g (81)

Inserting this into the expression above, we obtain a relation between the fermion
mass matrices m, and the WW-boson mass Myy:

Tr(m;my, +mime + 3m;m, + 3mimg) = 2922002 = 8 My 2. (8.2)

If we would assume that the mass of the top quark is much larger than all other
fermion masses, we may neglect the other fermion masses. In that case the above
relation would yield the constraint

8
mtop S, \/;MW (83)

For the Higgs boson h we obtain a mass mj by writing the term proportional to
h? in Theorem 7.2 in the form

b2

———4vy’h? = —my2h2.

2a2(0) " o

We then see that the Higgs mass is given by

- 27?\/5110

~a/f0)

By inserting (8.1) into this expression for the Higgs mass, we see that My, and my,
are related by

8.1.2. The Higgs mass

mp (8.4)

b
mp,® = 32— My,
a

Next, we introduce the quartic Higgs coupling constant A\ by writing

b, 1.,
72a2f(0)h =: ﬂ’\h .
From (6.6), we then find
b
A= 24¥g22. (8.5)
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We then find that the Higgs mass can be expressed in terms of the mass My of
the W-boson, the coupling constant go and the quartic Higgs coupling A as

2 _ ANMy?

m
h 392 )

(8.6)

8.1.3. The seesaw mechanism

Let us consider the mass terms for the neutrinos. The matrix Dg described in
Sec. 6.1 provides the Dirac masses as well as the Majorana masses of the fermions.
After a rescaling as in (6.9), the mass matrix restricted to the subspace of Hp with
basis {vr, VR, VL, VR} is given by

0 mj; mp O
m, 0 0 0
mpg 0 0 m;

0 0 m, O

Suppose we consider only one generation, so that m, and mp are just scalars. The
eigenvalues of the above mass matrix are then given by

1 1
:I:§mR + 5\/ mpg2 +4m,2.

If we assume that m, < mpg, then these eigenvalues are approximated by +mp
and i%. This means that there is a heavy neutrino, for which the Dirac mass m,
may be neglected, and its mass is given by the Majorana mass mpr. However, there
is also a light neutrino, for which the Dirac and Majorana terms conspire to yield

2
a mass 2w
MR

, which is in fact much smaller than the Dirac mass m,. This is called
the seesaw mechanism. Thus, even though the observed masses for these neutrinos
may be very small, they might still have a large Dirac mass (or Yukawa coupling).

From (8.2) we have obtained a relation between the masses of the top quark
and the W-boson, by neglecting all other fermion masses. However, because of the
seesaw mechanism, it might be that one of the neutrinos has a Dirac mass of the
same order of magnitude as the top quark. It would then not be justified to neglect
all other fermion masses, but instead we need to correct for such massive neutrinos.

Let us introduce a new parameter p (typically taken to be of order 1) for the
ratio between the Dirac mass m,, for the tau-neutrino and the mass m.,, of the top
quark (at unification scale), so we shall write m, = pm,.,. Instead of (8.3) we then
obtain the restriction

8
3+ p?

M. (8.7)

Meop S

8.2. Renormalization group flow

In this section we shall evaluate the renormalization group equations (RGEs) for
the Standard Model from ordinary energies up to the unification scale. For the
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validity of these RGEs we need to assume the existence of a big desert up to the
unification scale. One assumes

e that there exist no new particles (besides the known Standard Model particles
and the Higgs boson) with a mass below the unification scale;
e that perturbative quantum field theory remains valid throughout the big desert.

Furthermore, we shall also ignore any gravitational contributions to the renormal-
ization group flow.

8.2.1. Coupling constants

In Sec. 6.3.1, we have introduced the coupling constants for the gauge fields, and we
have obtained the relation gs* = go* = 2¢1%. This is precisely the relation between
the coupling constants at unification, common to grand unified theories (GUT).
Thus, it would be natural to assume that our model is defined at the scale Agyr.
However, it turns out that there is no scale at which the relation g3* = go? = 2¢1?
holds exactly, as we will see below.

The renormalization group 8 functions of the (minimal) standard model are
taken from [76-78] or [79]. We shall simplify the expressions by ignoring the 2-loop
contributions, and instead consider only the 1-loop approximation. By inserting the
number of ny = 3 generations, the renormalization group equations (RGEs) then
read (see [76, Eq. (B.2)] or [79, Eq. (A.1)])

dgi 1 41 19

T T b= <_?’ ?7>’
where t = log u. At first order, these equations are uncoupled from all other param-
eters of the Standard Model, and the solutions for the running coupling constants
gi(1) at the energy scale p are easily seen to satisfy

b; 1
_9 2 i
gi(p) " = gi(M + log -+ .

where My is the mass of the Z-boson [80]:
Mz = 91.1876 = 0.0021 GeV.

The experimental values of the coupling constants at the energy scale My are
known, and are given by [80]

g1(Mz) = 0.3575£0.0001, go(Mz) = 0.6519 + 0.0002,
g3(Mz) = 1.220 + 0.004.

Using these experimental values, we obtain the running of the coupling constants
in Fig. 1. As can be seen in this figure, the running coupling constants do not meet
in one point, and hence they do not determine a unique unification scale As,. In
other words, the relation g3 = ¢22 = % g12 cannot hold exactly at any energy scale,
unless we drop the big desert hypothesis. Nevertheless, in the remainder of this
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i3 g
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gauge couplings

log;o (1/GeV)

Fig. 1. The running of the gauge coupling constants. (Colors online.)

section we shall assume that this relation holds approximately. We shall consider
the range for Agyr determined by the triangle of the running coupling constants

in Fig. 1. The scale A1 at the intersection of \/ggl and go determines the lowest
value for A.,r, and is given by

82 (ggl(MZ)Q - 92(M2)2>

3
by — gbl

A1y = Mz exp =1.03x 10" GeV.  (8.9)

The highest value Aog is given by the solution of go = g3, which yields the value

872 (g3(Mz) > — ga(Mz)~?)
bo — b3

Aoz = My exp< ) =9.92 x 109 GeV. (8.10)
We will assume that the Lagrangian we have derived from the AC-manifold
M x F, is valid at some scale Agyp, which we take between Ao and Ags. All
relations obtained in Sec. 8.1 are assumed to hold approximately at this scale,
and all predictions that will follow from these relations are therefore also only
approximate.

Remark 8.1. In our approach, we compare the Lagrangian derived from the AC-
manifold at the GUT-scale with experimental values obtained in the low-energy
regime. Therefore our approach has nothing to say about the physics beyond the
GUT-scale (e.g., the occurrence of Landau poles). We believe that extending the
model beyond the GUT-scale would require a deeper understanding of a theory of
quantum gravity, which is beyond the scope of this review.
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8.2.2. Remnormalization group equations

The running of the neutrino masses has been studied in a general setting for non-
degenerate seesaw scales in [81]. In the following we shall consider the case where
only the tau-neutrino has a large Dirac mass m,, which cannot be neglected with
respect to the mass of the top-quark. In the remainder of this section, we shall cal-
culate the running of the Yukawa couplings for the top-quark and the tau-neutrino,
as well as the running of the quartic Higgs coupling. Let us write y,., and y, for
the Yukawa couplings of the top quark and the tau-neutrino, defined by

Myop = %\/iympvo, my = %ﬁyuvm (811)
where vg is the vacuum expectation value of the Higgs field.

We shall follow a similar approach as in [75]. Let mp be the Majorana mass for
the right-handed tau-neutrino. By the Appelquist—Carazzone decoupling theorem
[82], we then distinguish two energy domains: E > mp and E < mp. We shall
again neglect all fermion masses except for the top quark and the tau-neutrino.
For high energies E > mpg, the renormalization group equations are given by (see
[77, Eq. (B.4)], [81, Eq. (15)] and [78, Eq. (B.3)])

QYo 1 9 , s 17 5 9, )
At~ 1672 <2ytop+yu 1291 492 895 | Yiop>

7 —»16ﬂ2<3ymp+-2yy 191~ 792 | v

d\ 1 9

- 4)\2 o 2 2 A e 4 2 2 2 4

dt 16Tl'2< (391 +992 ) + 4(91 + g1 g2 +392 )
A, A - 12035 y>) (8.12)

Below the threshold E = mpg, the Yukawa coupling of the tau-neutrino drops out
of the RG equations and is replaced by an effective coupling

e

K=2 ,
mpr

which provides an effective mass m; = %m;oQ for the light tau-neutrino. The renor-

malization group equations of y,,, and A for E < mp are then given by

AYsop 1 9 9 17 5 9, 2
— = (ym—ﬁm—yr@%yw

dt 1672

d\ 1 2 2 2 9 4 2 2 4
7 = 1672 (4/\ — (3_91 + 9g2 )/\ + 1(91 +2917°92" + 392 )
+1202 A — 36yip). (8.13)
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The equation for y, is replaced by an equation for the effective coupling x given by
[81, Eq. (14)]

dk 1 A
prral <6y?0p — 3922 + E)H (8.14)

8.2.3. Running masses

The numerical solutions to the coupled differential equations of (8.12) to (8.14) for
Yiops Y and A depend on the choice of three input parameters:

e the scale Ay at which our model is defined;

e the ratio p between the masses m, and m,.p;

e the Majorana mass mp which produces the threshold in the renormalization
group flow.

The scale Agyr is taken to be either Ao = 1.03x 10" GeV or Asg = 9.92x10'6 GeV,
given by (8.9) and (8.10). We will determine the numerical solution to (8.12) to
(8.14) for a range of values for p and mp. First, we need to start with the initial
conditions of the running parameters at the scale A, . By inserting the top-quark
mass M., = %\/ﬁytopvm the tau-neutrino mass m, = pm,,,, and the W-boson mass
My = %gg’l)o into (8.7), we obtain the constraints

2 2
ytop(AGUT) S, \/T—pyg2(A(;UT)a yl/(AGUT) S, \/ﬁ—pQ92

where from (8.8) we have the values g2(A12) = 0.5444 and g2(A23) = 0.5170.
From (8.5), we have an expression for the quartic coupling A at Asyr. Approxi-

mating the coefficients a and b from (6.4) by a ~ (3+ p?)m?2_and b~ (34 p*)m? |
we obtain the boundary condition

(AGUT)a

3+p 2
————¢g2(A .
(3 +p2)2 92( GUT)

Using these boundary conditions, we can now numerically solve the RG equa-
tions of (8.12) from Agyr down to mpg, which provides us with the values for
Yiop (MR), Yo (mp) and A(mp). At this point, the Yukawa coupling y, is replaced by
the effective coupling x with the boundary condition

AMAgur) =24

k(mpg) = 27y,,(m3)2'

mp
Next, we numerically solve the RG equations of (8.13) and (8.14) down to My to
obtain the values for y,.,, # and A at ordinary energy scales.

The running mass of the top quark at these ordinary energies is then given by
(8.11). We find the running Higgs mass by inserting A into (8.6). We shall evaluate
these running masses at their own energy scale. For instance, our predicted mass
for the Higgs boson is the solution for u of the equation p = \/A(1)/3vp. In this

equation we shall ignore the running of the vacuum expectation value vy.
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The effective mass of the light neutrino is determined by the effective coupling
K, and we choose to evaluate this mass at the scale Mz. Thus, we calculate the

masses by
1 1 )
Mepop (Miop) = 5\/§ymp(mmp)vo, my(Mz) = ZF»(Mz)vo ;

A(mp)
3

mp(mp) = Vo,
where, from the W-boson mass [80] My = 80.399 £ 0.023 GeV, we insert the value
vp = 246.66 £ 0.15. The results of this procedure for m,,,, m; and m;, are given
in Table 2. In this table, we have chosen the range of values for p and mp such
that the mass of the top-quark and the light tau-neutrino are in agreement with
the experimental values [80]

Myop = 172.0£0.9 £1.3GeV, my <2eV.

For comparison, we have also included the simple case where we ignore the Yukawa
coupling of the tau-neutrino (by setting p = 0), in which case there is also no
threshold at the Majorana mass scale. As an example, we have plotted the running
of A, Yop, Y and & for the values of Agyr = Aoz = 9.92 x 10*° GeV, p = 1.2, and
mp = 3 x 102 GeV in Figs. 2-5.

Table 2. Numerical results for the masses mq,p of the top-quark, m; of the light
tau-neutrino, and my, of the Higgs boson, as a function of Agyr, p and mpg.

Agur(103 GeV) | 1.03 1.03 1.03 1.03 1.03 1.03 1.03

p 0 0.90 0.90 1.00 1.00 1.10 1.10
mp (1013 GeV) — 0.25 1.03 0.30 1.03 0.35 1.03
Miop (GeV) 183.2 1739 1741 1719 1721  169.9  170.1
my(eV) 0 2.084 0.5037  2.076  0.6030  2.080  0.7058
mp,(GeV) 188.3 1755  175.7  173.4  173.7  171.5 1718
Acur(1016 GeV) 9.92 9.92 9.92 9.92 9.92

p 0 1.10 1.10 1.20 1.20

mg (1013 GeV) — 0.30 2.0 0.35 9900
Miop (GeV) 186.0 173.9 174.2 171.9 173.5
my(eV) 0 1.939 0.2917 1.897 6.889 x 10~°
mp,(GeV) 188.1 171.3 171.6 169.1 171.2
Agur(1016 GeV) 9.92 9.92 9.92 9.92

p 1.30 1.30 1.35 1.35
mp(10'3 GeV) 0.40 9900 100 9900
Miop (GeV) 169.9 171.6 169.8 170.6
my(eV) 1.866 7.818 x 107° 8.056 x 1073 8.286 x 10~°
mp,(GeV) 167.1 169.3 167.4 168.4

1230004-97



K. van den Dungen € W. D. van Suijlekom

T T T T [ T T T T T T T T T T T T T T T T

1.6

1.5

1.4

1.3

LN e s B B B B S B B
v b b b e b b e

) Y S S IS s S S S S S S [N S SO SO SN S SN S NN SO

2 4 6 8 10 12 14 16
log;q (11/GeV)

Fig. 2. The running of the quartic Higgs coupling \ for Agyr = 9.92 x 1016 GeV, p = 1.2, and
mpg =3 x 1012 GeV. (Color online.)
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Fig. 3. The running of the top-quark Yukawa coupling yop for Acur = 9.92 x 1016 GeV, p = 1.2,
and mp = 3 x 102 GeV. (Color online.)

For the allowed range of values for p and mp which yield plausible results for
My, and my, the mass my, of the Higgs boson takes its value within the range

167 GeV < my, < 176 GeV.

The errors in this prediction produced by the initial conditions (other than m,,, and
my) taken from experiment, and by ignoring higher-loop corrections to the RGEs,
are smaller than this range of possible values for the Higgs mass, and therefore
we shall ignore these errors. However, recent results [83, 84| from the ATLAS and
CMS experiments at the Large Hadron Collider at CERN have already excluded
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Fig. 4. The running of the tau-neutrino Yukawa coupling y, for Aqyr = 9.92x1016 GeV, p = 1.2,
and mg = 3 x 1012 GeV. (Color online.)
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Fig. 5. The running of the effective coupling & for Agyr = 9.92 x 106 GeV, p = 1.2, and
mp = 3 x 1012 GeV. (Color online.)

our predicted range at the 99% confidence level. In fact, the latest preliminary
results, announced by CERN on 4 July 2012, show the discovery of a new boson in
the mass region around 125-126 GeV.

It might be that our big desert hypothesis all the way up to GUT-scale is wrong.
In fact, the mismatch of the three lines in Fig. 1 indicates that this hypothesis can-
not be correct. Improvements for this problem in the context of noncommutative
geometry have been proposed in [85]. Also, it is interesting to see what supersym-
metry has to say in the context of noncommutative geometry, since in, for instance,
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the minimally supersymmetric Standard Model the three lines supposedly do meet.
The recent [86, 87] appear to be promising in this respect.

Finally in [88], the Higgs mass could be lowered to a more realistic value, after
realizing the presence of a real scalar field in the noncommutative model.

9. Outlook

In this review paper, we have presented the ideas from noncommutative geome-
try that allows for a geometrical description of the Standard Model of high-energy
physics, in addition allowing for predictions. As a geometrical theory, it unifies
gravity and the Standard Model, albeit on a classical level. At present, this geo-
metrical description of gravity and the Standard Model faces two main challenges.
First, as mentioned in Remark 2.1, the almost-commutative spacetimes discussed
in this paper are all based on Riemannian spacetimes. In order to properly describe
physical theories, a generalization of the noncommutative geometry framework to
pseudo-Riemannian (e.g., Lorentzian or Minkowskian) spacetimes is required. Some
progress in this direction has been obtained in [39-46] though this program is far
from being completed.

Second, noncommutative geometry only describes physics at the classical level.
Let us now comment on some recent developments on the problem of quantization
in the context of noncommutative geometry.

Ever since Heisenberg, it was believed that uncertainty relations between space-
time coordinates might improve the short-distance singularities appearing in a
quantum theory of fields. Eventually, this led Snyder [89] to the study of the Moyal-
type relations already presented in the Introduction. The corresponding uncertainty
relations were also found in [90] when combining the principles of quantum theory
with those of general relativity.

Although this noncommutativity indeed improves its UV-behavior, it turned
out [91] that scalar quantum field theory on a Moyal plane has bad behavior at
the IR-side: the notorious UV/IR-mixing. Because of this, it was very surprising
that [92] came up with a scalar field theory that was renormalizable. This theory
is presently under construction (in the sense of constructive quantum field theory)
[93-95].

As far as the spectral action approach is concerned, there are some recent results
by one of the authors on renormalization of the asymptotically expanded spectral
action as a higher-derivative theory [96-99]. As usual for higher-derivative gauge
theories (cf. [100, Sec. 4.4]), this renders the asymptotically expanded Yang-Mills
spectral action (on a flat background spacetime) superrenormalizable with coun-
terterms proportional to the Yang—Mills action, indeed appearing at lowest order
in the spectral action.

An interesting open problem is whether the above results could lead to a more
intrinsic understanding of quantization, that is, in the context of noncommutative
geometry. Inevitably, such a quantum noncommutative geometry has to combine
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ideas from (loop) quantum gravity with those from quantum gauge theories, and
such an analysis has started in [6-9]. Within the noncommutative geometry setup,
one would then arrive at a unified and geometrical formulation of quantum gravity
with matter.
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