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Abstract:

e Quantum lens spaces as ‘direct sums of line bundles’

“Total spaces’ of principal bundles over quantum projective spaces

e For each of these QLS a Gysin sequence in KK-theory

Used to compute the KK-theory of the QLS.s

Explicit geometric representatives of the K-theory classes which
are ‘line bundles’ and generically are ‘torsion classes’

e On line bundles on QPS: monopole connections

e On higher rank bundles on QPS: instanton connections



The classical Gysin sequence
Long exact sequence in cohomology; for any sphere bundle

In particular, for circle bundles: U(1) - E 5 X

e HE(E) T g1 2B,

complicate to generalize to quantum spaces

rather go to K-theory

HM(X) & B L(E) — -



Projective spaces and lens spaces
CP™ = s2nt1/y(1) and L) = g2nt+l /7,
assemble in principal bundles : S2n+1__| (nr) 7™ cpn

This leads to the Gysin sequence in topological K-theory:
0— K1(L(Mmm)) 2 gO(cpm) -2 KO(CcPm) == KO(L(m)) —0

d is a ‘connecting homomorphism’
a is multiplication by the Euler class x(O_;) :=1 — [O_,]

From this:
KL(L™M)) ~ ker(a) and  KO(L(™)) ~ coker(a)

torsion groups



The quantum spheres and the projective spaces

The coordinate algebra 0(55”“) of quantum sphere Sg”’"'l:
x-algebra generated by 2n + 2 elements {z;, 2] };=0... . n S.t.:

zizqu_lzjzi 0<i1<3< n,
2] 2j = qzj%; LFJ
n
2 .
[2),20) =0, [z,2] =(1—-4q°) Z ij; t1=20,...,n—1,
j=it+1

and a sphere relation:

1 = 2020 + 2127 + ... + znz;, .

L. Vaksman, Ya. Soibelman, 1991 ;: M. Welk, 2000



The x-subalgebra of 0(53”“) generated by

Dij = Z;{ZJ
coordinate algebra O(CPy) of the quantum projective space CPy

Invariant elements for the U(1)-action on the algebra O(S%”"‘l):

(z0,21,..-,2n) — (Az0, A21, ..., A\zZn), A e U(1).

the fibration s§“+1 — CPy is a quantum U(1)-principal bundle:

O(CP?) = o(s2nthHV) . o(s2ntly.



The C*-algebras C(S(?”“Ll) and C(CPy) of continuous functions:
completions of O(S%”‘H) and O(CPy) in the universal C*-norms

these are graph algebras J.H. Hong, W. Szymanski 2002
= Ko(CP?) ~ 7zt ~ KO(C(CPY))
F. D’Andrea, G. L. 2010

Generators of the homology group KO(C(CPQ)) given explicitly
as (classes of) even Fredholm modules

Ui = (O(CPZ’), H(k)? W(k), Y(k): F(k))7 for O0< k<n.



Generators of the K-theory KO((CP’(’;) also given explicitly as pro-
jections whose entries are polynomial functions:

line bundles & projections

For N € Z, vector-valued functions

Wy = ) s.t. WiV =1
= Py = W WY is a projection:
N|+n
Py € Mg (0P, dy = (N7,

Entries of Py are U(1)-invariant and so elements of O(CPy)



Proposition 1. For all N € N and for all 0 < k <n it holds that

: N
([, [P_N) := Trag (v G (Tr P_y)) = ()

[110], - - -, [un] are generators of K9(C(CP)),

and [Pp], ..., [P-p] are generators of Kq(CPy)

The matrix of couplings M € M,,;1(Z) is invertible over Z:

M;j = ([wil, [P_;1) = (1), (M1 = (1) (7).

These are bases of Z"t1 as Z-modules:

they generate 7" *T1 as an Abelian group.



The inclusion O(CPp) — O(Sgn"'l) isa U(1l) g.p.b.

To a projection Py there corresponds an associated line bundle

Ly =~ (O(CPM)INPy =~ P_\(O(CP))IN

Ly made of elements of O(S§”+1) transforming under U(1) as

on = onAY A€ U(1)

Each L, is indeed a bimodule over Ly = O((CP’@;); — the bimodule
of equivariant maps for the IRREP of U(1) with weight N. Also,

LN ®ocpr) LM = LN+M



Denote [Py] = [Lyn] in the group Kq(CPy).

The module Ly is a line bundle, in the sense that its ‘rank’ (as
computed by pairing with [ug]) is equal to 1

Completely characterized by its ‘first Chern number’ (as com-
puted by pairing with the class [u1]):

Proposition 2. For all N € Z it holds that

(lwol, [N =1 and  ([pa], [LN]) = —N.



The line bundle £_1 emerges as a central character:
its only non-vanishing charges are

([nol, [£-1]) =1 ([p1],[£-1]) =1

L_1 is the tautological line bundle for CPy,

with Euler class

u=x([£-1]) :=1-[L_4].

Proposition 3. It holds that
Ko(CPY) ~ Z[u] /u" T ~ 271

(] and (—u)? are dual bases of K-homology and K-theory



The quantum lens spaces

Fix an integer r > 2 and define
O(L(gn’r)) = @ 'CTN°
NEZ

Proposition 4.
O(L(gn”)) is a x-algebra; all elements of O(S7" 1) invariant under
the action ay : Zy — Aut((’)(SgM'l)) of the cyclic group Zy:

,GQWI/T

(z0,21,...,2n) — (627”/Tzo, eQW'/Tzl, . Zn) .

The ‘dual’ L™
the quantum lens space of dimension 2n 4+ 1 (and index r)

There are algebra inclusions

j: O(CP?) = O(L{™) — o(s2+1y .



Pulling back line bundles

Proposition 5. The algebra inclusion j : O(CP?) — O(Ly"")) is a
quantum principal bundle with structure group U(1) := U(1)/Z,:

O(CP™) = o(L{™HUM).

Then one can ‘pull-back’ line bundles from CP} to L{mr),

Ly Jx Ly

O(L@f'“)q) - O(ép@;) .



Definition 6. For each Ly an O(CPy)-bimodule (a line bundle
over CPY), its ‘pull-back’ to Lgnﬂ“) is the O(Lgn’r))—bimodu/e

Ly = j:(Ln) = O(L"") ®@ocpny £

The algebra inclusion j : O(CP?) — O(LC(]”’T)) induces a map

js : Ko(CP?) — Ko(L™™)



Each Ly over CPy is not free when N # 0O,

this need not be the case for £y over L{™™

the pull-back LN_T of L_, is tautologically free :

Lo =0 @p Ly~ 0L = L.

= (L_nN)®" ~ L£_.n also has trivial class for any N € Z

~

L_n define torsion classes; they generate the group KO(L((J”’T))



Multiplying by the Euler class

A second crucial ingredient

Q. Ko(CPZ’) — KO(CPZ),

a is multiplication by x(L_p) i =1—[L_;]

the Euler class of the line bundle L_,



Assembly these into an exact sequence, the Gysin sequence

0 — K1 (L{™™)—Ko(CPM) -2 Ko(CPM) L Ko(L{™™) —0

0 — K1(LY) N9 go(cP) — ...
and

..... — KoLy nde g

Indy comes from Kasparov theory



Write A= C(L((J”’r)), = C(CPy)

The infinitesimal generator of the circle action determines an
unbounded self-adjoint operator
D Dom(D) - X

Theorem 7. (Carey, Neshveyev, Nest, Rennie 2011)
The pair (X,9) yields a class in the bivariant KKq(A, F)

the Kasparov product with the class [(X,®)] thus furnishes

Indg : K«(A) = Kyq1(F), Indo(—) = —®A[(X,D)].



Theorem 8. (Arici, Brain, L.) The Gysin sequence is exact

This leads to a commutative diagram

0— Ko(S(A)) = Ko(M(F, A)) & Ko (F)-2- K1 (S(A))—0

Jid |~ |x[-£-;]  |Bott

0—— K1 (A)—" Ko(F)—%— Ko(F) L~ Ko(A)——0




Some practical and important applications, notably, the compu-
tation of the K-theory of the quantum lens spaces LE,”’T).

Thus

K1 (L) ~ ker(a), Ko(L{™) ~ coker(a) .

Moreover, geometric generators of the groups

Ky (L) Ko (L)

for the latter as pulled-back line bundles from (CPQ to LC(]"’”



Explicit generators as integral combinations of powers of the
pull-back to the lens space L((]”’T) of the generator

u:=1-— [[,_1]

Example 9. Forn=1

Ko(C(L& ) =202,

From definition [£_,] = 1, thus £_1 generates the torsion part.

Alternatively, from u2 = 0 it follows that £_; = —(j — 1) 4+jL_1;
upon lifting to L(gl’r), for j = r this yields

r(l—[£_1]) =0

or 1 —[£_1] is cyclic of order r.



Example 10. If r = 2 L{®? = s2"*1,7, = rp2"t1,
the quantum real projective space, we get

Ko(C(RP"™)) = Z.& Zon
Owing to £_» ~ L one has
(1—[£_1D)% =21 — [£_1]),

Since u"T1 = 0, with u = 1 —[£_1], when pulled back to the lens
space, by iterating this implies that

0= (1—[L_1D" T =271 - [£_1]);

the generator 1 — [£ 4] is cyclic with the correct order 2.



Example 11. For n = 2 there are two cases.
Use & =1 — [£_1]. Conditions [£_(,4 ] =[£_;] lead to

ir(r—1)a?—ru=0 and ra°=0,

When » = 2k + 1; these say that v and 42 are cyclic of order r:

ri=0, ru2=0, Ko(LP ) =202, @ Z,

When r = 2k; (L_2)f~ Ly = (1 -[£L_]D)%2=2(1-[L£_4]), and
O=QQ—-[L_]D3=41-[L_;])) =4ku—2k(k—1)T?

This yields 12 4 2a of order r/2 and u is of order 2r

Lr@@+2u)=0, 2ra=0, Ko(CLP))=za Ly & Loy



Example 12. When n = 3 there are four cases

Case r =0 (mod 6):
Ko(C(LP) =26 2; ©2s 6 71,

Case r =2,4 (mod 6):
Ko(C(LZ) =z @ Zy © Ly ® Lay

Case r =3 (mod 6):
Ko(C(LG™) = 2@ 2y & 2 & Zs,

Case r=1,5 (mod 6):

Ko(C(LE ) =202, ® Zr © Z,
All with explicit generators



More general scheme: Pimsner algebras M.V. Pimsner '97
The slogan: a line bundle is a self-Morita equivalence bimodule
E a (right) Hilbert module over B

B-valued hermitian structure (-,-) on E

L(FE) adjointable operators; K(FE) C L(E) compact operators
with §,n € E, denote 0;, € K(FE) defined by 0, ,(¢) =& (n,()

There is an isomorphism ¢ : B — K(F) and E is a B-bimodule



Comparing with before:

O(CP;) ~ B and L_,~ FE

Look for the analogue of C’)(LC(I’"”"")) ~»  Op Pimsner algebra

Define the B-module
Ex = @@ E®, E9=pB
NeZ

E®¢E the inner tensor product: a B-Hilbert module with B-
valued hermitian structure

(€1 ®@n1,82 ®@n2) = (N1, p({§1,£2))12)

E~1 = E* the dual module;
its elements are written as A\¢ for § € £ A¢(n) = (§,m)



For each £ € E a bounded adjointable operator

generated by S; : E®N _y p®s(N+1).

Se(b) :=¢0, be B,
Se(61®-®&N) =EREL®- - VN, N >0,
Sg()\&@"'@)\g_]v) = )\gng—lwgl,g)®>\€3®"'®>\£_N, N < 0.

Definition 13. The Pimsner algebra O of the pair (¢, E) is
the smallest subalgebra of L(E~) which contains the operators
S¢ i Boo = Exo for all § € E.

Pimsner: universality of Og



There is a natural inclusion

B — Opg a generalized principal circle bundle

roughly: as a vector space Ofp ~ E~x and

EOsN S0 gAY, A e U(l)

Two natural classes in KK-theory:

1. the class [E] € KKy(B, B)
of the even Kasparov module (E, ¢,0) (with trivial grading)

the map 1 — [E] has the role of the Euler class x(FE) : =1 — [F]

of the line bundle E over the ‘noncommutative space’ B



2. the class [0] € KK1(Og, B)

of the odd Kasparov module (Exso, ¢, F):

F:=2P -1 ¢ L(Ex) of the projection P : Fsc — Eoo With
Im(P) = (8f=0 E%") C Fo

and inclusion ¢ : Op — L(E).

The Kasparov product induces group homomorphisms
[F] : K«(B) = K«(B), |[E]: K*(B)— K*(B)
and

0] : K+«(Op) — K,411(B), [0]: K*(B) - K*T1(0p),



Associated six-terms exact sequences Gysin sequences:
in K-theory:

1—-(F Ty
Ko(B) UL koB) In Ko(Op)

[aﬂ l[a] ;

K1(Og) . K1(B) W K1(B)

the corresponding one in K-homology:

K%(B) T K°(B) <+ K°Ogp)

l[a] [aﬂ

Klop 2 ki) 2P gip

In fact in KK-theory



Quantum weighted projective lines and lens spaces:

B = O(Wy(k,l)) = quantum weighted projective line

the fixed point algebra for a weighted circle action on (’)(Sg)
ZOI—>)\kZO, zZ1 I—)Alzl, A€eU(l)

The corresponding universal enveloping C*-algebra C(Wy(k,1))

does not in fact depend on the label k: isomorphic to the uni-
talization of I copies of K = compact operators on [2(Np)

C(We(k, 1)) = ®L_K

Then: Ko(C(Wy(k,1))) =71 K (C(Wy(k,1))) =0

a partial resolution of singularity, since classically

Ko(C(W (k, 1)) =77



O = O(Lg¢(lk; k,1)) = quantum lens space

Indeed, a vector space decomposition

O(Lqg(lk; k, 1) = BnezOny (K, 1),

with F = (9(1)(k,l) a right finitely projective module

Oy (k1) 1= (21" - O(Wy(k, 1)) + (28)" - O(Wy(k, 1))

Also, O(Ly(lk; k,1)) the fixes point algebra of a cyclic action
Z/(Ik)Z x S3 — S?

27 2mi
20 —> eXD(T) 20 zZ1 — eXp(T) <1 -



K-theory and K-homology of quantum lens space

Denote the diagonal inclusion by ¢ : Z — Z!, 1 — (1,...,1) with
transpose ' : Z - Z, Jt(mq,...,m)) =m1+ ...+ my.

Theorem 14. (Arici, Kaad, L.) With k,l € N coprime:
Ko(Lq(lk; k,1))) ~ coker(1 — E) ~ Z & (Z'/Im(1))
K1 (Lq(lk; k, l))) ~ ker(l — E) ~ 7!

as well as
KO (Lq(lk; k, l))) ~ker(l—EY ~7 @ (ker(uf))
Kl(Lq(lk; k, l))) ~ coker(1 — EY) ~ 7.

Again there is no dependence on the label k.



‘grand motivations / applications’ :
Gauge fields on noncommutative spaces
T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles
(two-forms on the base space M) also giving an isomorphism
between Dixmier-Douady classes on E and line bundles on M



Summing up:

many nice and elegant and useful geometry structures

hope you enjoyed it ; more to come soon



Thank you !!



