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© Motivation

e The operator *-algebra of Holder functions

© Dixmier traces and cyclic cocycles

@ An example on S?
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Motivation

Regularity in spectral triples

Spectral triples
Recall that a spectral triple is a collection (A, H, D) where

*

@ A=A actson #;
@ D is a self-adjoint operator on H with (i + D)™ € K(#);
@ A CLipp(A) :={ac A:aDom(D) C Dom(D), [D, a] bounded}.
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Motivation

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection (A, H, D) where

Q A= A acts on H;

@ D is a self-adjoint operator on H with (i + D)™ € K(#);
@ A CLipp(A) :={ac A:aDom(D) C Dom(D), [D, a] bounded}.

4

Role of A

The *-algebra A plays the role of a “differentiable structure”. How
“differentiable” is really such an algebra?
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Motivation

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection (A, H, D) where

@ A=A actson H;
@ D is a self-adjoint operator on H with (i + D)™ € K(#);
@ A CLipp(A) :={ac A:aDom(D) C Dom(D), [D, a] bounded}.

Role of A

The *-algebra A plays the role of a “differentiable structure”. How
“differentiable” is really such an algebra?

Prototypical example

Take a closed Riemannian manifold M, a Clifford bundle S — M and a Dirac
operator D on S. Then (A, L>(M,S), D) is a spectral triple
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Motivation

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection (A, H, D) where

@ A=A actson H;
@ D is a self-adjoint operator on H with (i + D)™ € K(#);
@ A CLipp(A) :={ac A:aDom(D) C Dom(D), [D, a] bounded}.

Role of A

The *-algebra A plays the role of a “differentiable structure”. How
“differentiable” is really such an algebra?

Prototypical example

Take a closed Riemannian manifold M, a Clifford bundle S — M and a Dirac
operator D on S. Then (A, L>(M,S), D) is a spectral triple for any

C™(M) € AC Lip(M) :={a € C(M) : 3C, |a(x) — a(y)| < Cd(x,y)}.
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Motivation

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A,
consider a closed topological manifold M.

Magnus Goffeng Detecting regularity using cyclic cocycles and singular traces



Motivation

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A,
consider a closed topological manifold M.

© M admits an “essentially unique” Lipschitz structure (Sullivan) and
Lip(M) C C(M) is uniquely determined.

@ The Telemann spectral triple (Lip(M), L2(M, A* T*M), D) associated with the
Lipschitz structure is determined (up to bounded perturbations) by the Lipschitz
homeomorphism class of M.
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Motivation

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A,
consider a closed topological manifold M.

A = Lip(M)

© M admits an “essentially unique” Lipschitz structure (Sullivan) and
Lip(M) C C(M) is uniquely determined.

@ The Telemann spectral triple (Lip(M), L2(M, A* T*M), D) associated with the
Lipschitz structure is determined (up to bounded perturbations) by the Lipschitz
homeomorphism class of M.

A= CY{(M)

© If My and M, are two Ck-structures on M, Ck(Ml) >~ Ck(l\/lg) iff M1 =2 M> as
Ck-manifolds.

@ Any Cl-structure on M gives rise to a unique real analytic structure (Whitney),
so if My 2 M, as Cl-manifolds then My 22 M, as C°°-manifolds.

@ A spectral triple (C>(M), L?(M, S), D) (plus additional data) determines M
with its C°°-structure by Connes’ reconstruction theorem.
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Motivation

Holder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and
Co(M) = {a € C(M) : 3C, |a(x) — a(y)| < Cd(x,¥)°}, a € (0,1).
The limit case o = 1 is to be interpreted as Lip(M) rather than C1(M).
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Motivation

Holder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and
Co(M) = {a € C(M) : 3C, |a(x) — a(y)| < Cd(x,¥)°}, a € (0,1).
The limit case o = 1 is to be interpreted as Lip(M) rather than C1(M).

NCG of Hélder functions

e If D € WS(M, E), s € (0,q) is elliptic, (C*(M), L>(M, S), D) is a spectral triple.
o If F € WO(M, E) satisfies
F?—1,F - F* e WM, E),
(C*(M), L2(M,S), F) is a (d/a, co)-summable Fredholm module.
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Motivation

Holder continuous functions
Let M be a d-dimensional smooth closed Riemannian manifold and
Co(M) = {a € C(M) : 3C, |a(x) — a(y)| < Cd(x,¥)°}, a € (0,1).
The limit case o = 1 is to be interpreted as Lip(M) rather than C1(M).

NCG of Hélder functions

e If D € WS(M, E), s € (0,q) is elliptic, (C*(M), L>(M, S), D) is a spectral triple.
o If F € WO(M, E) satisfies

F>—1,F—F* € W"(M,E),
(C*(M), L2(M,S), F) is a (d/a, co)-summable Fredholm module.

@ A source for non-examples in NCG.
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Motivation

Holder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and
Co(M) = {a € C(M) : 3C, |a(x) — a(y)| < Cd(x,¥)°}, a € (0,1).
The limit case o = 1 is to be interpreted as Lip(M) rather than C1(M).

NCG of Hélder functions

e If D € WS(M, E), s € (0,q) is elliptic, (C*(M), L>(M, S), D) is a spectral triple.
o If F € WO(M, E) satisfies

F>—1,F—F* € W"(M,E),
(C*(M), L2(M,S), F) is a (d/a, co)-summable Fredholm module.

@ A source for non-examples in NCG.

@ Differential topological invariants for low regularity functions, used when solving
non-linear PDE arising from field equations (e.g. Skyrme's model).
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Motivation

Holder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and
Co(M) = {a € C(M) : 3C, |a(x) — a(y)| < Cd(x,¥)°}, a € (0,1).
The limit case o = 1 is to be interpreted as Lip(M) rather than C1(M).

NCG of Hélder functions

e If D € WS(M, E), s € (0,q) is elliptic, (C*(M), L>(M, S), D) is a spectral triple.
o If F € WO(M, E) satisfies

F>—1,F—F* € W"(M,E),
(C*(M), L2(M,S), F) is a (d/a, co)-summable Fredholm module.

@ A source for non-examples in NCG.

@ Differential topological invariants for low regularity functions, used when solving
non-linear PDE arising from field equations (e.g. Skyrme's model).

© Gromov’s question on optimal bounds on the Holder exponent of isometric
embeddings of euclidean balls into a contact manifold with its sub-Riemannian
metric.
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The operator *-algebra of Holder functions

The structure of C%(M)

An operator algebra is a closed sub-algebra of a C*-algebra. For instance, Lip(M) has
an operator algebra structure defined from a Dirac operator D acting on some Clifford
bundle S — M. This uses the homomorphism

7p : Lip(M) — L°(M,End(S & S)), mp(a) := ([D‘?a] 2) ‘
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The operator *-algebra of Holder functions

The structure of C%(M)

An operator algebra is a closed sub-algebra of a C*-algebra. For instance, Lip(M) has
an operator algebra structure defined from a Dirac operator D acting on some Clifford
bundle S — M. This uses the homomorphism

7p : Lip(M) — L°(M,End(S & S)), mp(a) := ([D‘?a] 2) ‘

Operator algebra structure on C%(M)
Set X := M x M\ Ap. For a € (0,1], define mo : C¥(M) — Cp(X, M2(C)) by

(m(a) 0o\ [ alx) 0
ma(a) := (5i(a) WR(a))_<W a(y))'

Since 0« is a (7, wR)-derivation, 7 is an isometric Banach algebra homomorphism.
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The operator *-algebra of Holder functions

The structure of C%(M)

An operator algebra is a closed sub-algebra of a C*-algebra. For instance, Lip(M) has
an operator algebra structure defined from a Dirac operator D acting on some Clifford
bundle S — M. This uses the homomorphism

7p : Lip(M) — L°(M,End(S & S)), mp(a) := ([D‘?a] 2) ‘

Operator algebra structure on C%(M)
Set X := M x M\ Ap. For a € (0,1], define mo : C¥(M) — Cp(X, M2(C)) by

(m(a) 0o\ [ alx) 0
ma(a) := (ai(a) WR(a))_<W a(y))'

Since 0« is a (7, wR)-derivation, 7 is an isometric Banach algebra homomorphism.

We set h®(M) := COO(M)C and note that
h*(X) ={a € C¥M) :da(a) € Co(X)}, fora<l.
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The operator *-algebra of Holder functions

The structure of C%(M)

An operator algebra is a closed sub-algebra of a C*-algebra. For instance, Lip(M) has
an operator algebra structure defined from a Dirac operator D acting on some Clifford
bundle S — M. This uses the homomorphism

7p : Lip(M) — L°(M,End(S & S)), mp(a) := ([D‘?a] 2) ‘

Operator algebra structure on C%(M)
Set X := M x M\ Ap. For a € (0,1], define mo : C¥(M) — Cp(X, M2(C)) by

(m(a) 0o\ [ alx) 0
ma(a) := (ai(a) WR(a))_<W a(y))'

Since 0« is a (7, wR)-derivation, 7 is an isometric Banach algebra homomorphism.

We set h®(M) := COO(M)C and note that
h*(X) ={a € C¥M) :da(a) € Co(X)}, fora<l.

Letting Q denote the Stone-Cech boundary of X, i.e. C(2) = Cp(X)/Co(X), and
q : Cp(X) — C(R) the quotient, h*(X) = ker g o dq.
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The operator *-algebra of Holder functions

The structure of C%(M) continued

Non-separability
© The operator algebra Lip(M) is closed in the strong operator topology in
L>°(M,End(S & S)).
@ For a <1, C¥(M) = h*(M)** (Weaver).
Q If d >0, C*(M) is non-separable.
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The operator *-algebra of Holder functions

The structure of C%(M) continued

Non-separability

© The operator algebra Lip(M) is closed in the strong operator topology in
L>°(M,End(S & S)).

@ For a <1, C¥(M) = h*(M)** (Weaver).
Q If d >0, C*(M) is non-separable.

Non-commutative “vector-fields”

There are inclusions C(M) C C(SM) C C(R) so, Q2 is a “thickening” of SM in the
sense that there are mappings

Q—M

N/

SM.
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The operator *-algebra of Holder functions

The structure of C%(M) continued

Non-separability

© The operator algebra Lip(M) is closed in the strong operator topology in
L>°(M,End(S & S)).

@ For a <1, C¥(M) = h*(M)** (Weaver).
Q If d >0, C*(M) is non-separable.

Non-commutative “vector-fields”

There are inclusions C(M) C C(SM) C C(R) so, Q2 is a “thickening” of SM in the
sense that there are mappings
Q—M
N/
SM.
If x € Q and o = 1, then
61(a)(x) = p(x).a(x), for ae C>®(M).

In particular, for v € SM the set p—1(v) C Q is that of extensions of “directional
derivatives along v" to C¥(M).
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Dixmier traces and cyclic cocycles

Cyclic (co)-homology

We consider a unital Frechet algebra A. Set
Ce(A) = A%FHL and  CMA) = ADKHL /(1 — \) Ak
where M(ap ® -+~ ® ax) = (—1)¥ax ® a0 ® - - - ® ax_1. There is a differential

k—1
blag®--®a) = (-1Yao @ -aj_ 1 ® ajajp1 @ ® a
j=0

+(-Draa@ar @ ® ax_1.

We set  HCi(A) := Hu(C2(A), b), HH.(A) := Hi(Ci(A), b)
and HC*(A) := H*(C(A), b*), HH*(A) := H*(C*(A), b*)
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Dixmier traces and cyclic cocycles

Cyclic (co)-homology

We consider a unital Frechet algebra A. Set
Ce(A) = A%FHL and  CMA) = ADKHL /(1 — \) Ak
where M(ap ® -+~ ® ax) = (—1)¥ax ® a0 ® - - - ® ax_1. There is a differential

k—1
blag®--®a) = (-1Yao @ -aj_ 1 ® ajajp1 @ ® a
j=0

+(-Draa@ar @ ® ax_1.

We set  HCi(A) := Hu(C2(A), b), HH.(A) := Hi(Ci(A), b)
and HC*(A) := H*(C(A), b*), HH*(A) := H*(C*(A), b*)

The SBIl-sequence

The periodicity operator S : HC,2(A) — HC,(A) fits into a long exact sequence
with Hochschild homology:

o By HHL 2 (A) L HC0(A) 25 HCL(A) B HH, 1 (A) L HC 1 (A) 2 -

where B : HC,(A) — HH,1(.A) denotes the Connes differential. Analogous
sequences are exact on the dual side.
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Dixmier traces and cyclic cocycles

Dictionary for smooth manifolds

HC,(A) and HH.(.A) will denote the cyclic and Hochschild homology respectively.
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Dixmier traces and cyclic cocycles

Dictionary for smooth manifolds

HC,(A) and HH.(.A) will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let M be a closed manifold, A = C°°(M) and let Q4(M) denote the space of k-forms
on M:

o HC(A) = @20 Hiy ¥ (M) & Q%(M)/B¥(M), where Hjg(M) is the de Rham
cohomology and BX(M) the space of exact k-forms.
@ HHi(A) =2 Qi (M).
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Dixmier traces and cyclic cocycles

Dictionary for smooth manifolds

HC,(A) and HH.(.A) will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let M be a closed manifold, A = C°°(M) and let Q4(M) denote the space of k-forms
on M:

o HC(A) = @20 Hiy ¥ (M) & Q%(M)/B¥(M), where Hjg(M) is the de Rham
cohomology and BX(M) the space of exact k-forms.

o HH(A) = Q(M).

The index character of a Fredholm module

A Fredholm module (A, H, F) satisfying F2 = 1 and [F, a] € L¥(H) for a € A gives
rise to a cyclic k-cocycle:

ch’,f—(ao, ai,...,ax) = cktr(yaolF, a1] - - - [F, ak])-
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Dixmier traces and cyclic cocycles

Dictionary for smooth manifolds

HC,(A) and HH.(.A) will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let M be a closed manifold, A = C°°(M) and let Q4(M) denote the space of k-forms
on M:

o HC(A) = @20 Hiy ¥ (M) & Q%(M)/B¥(M), where Hjg(M) is the de Rham
cohomology and BX(M) the space of exact k-forms.
@ HHi(A) =2 Qi (M).

The index character of a Fredholm module

A Fredholm module (A, H, F) satisfying F2 = 1 and [F, a] € L¥(H) for a € A gives
rise to a cyclic k-cocycle:

ch‘,f—(ao, ai,...,ax) = cktr(yaolF, a1] - - - [F, ak])-

The Hochschild character of a spectral triple

A spectral triple (A, #, D) satisfying D=1 € £9:°°(H) and a singular state
w € (£%°/cg)* give rise to a Hochschild cocycle:

7D, (20,31, - - -, ag) = catrw(yao[D, a1] - - - [D, ag)|D| 7).
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Dixmier traces and cyclic cocycles

Cyclic theories and Holder functions

Recall the following facts:

@ If ac C*(M) and F € WO(M,E), [F,a] € LI/%(L2(M, E)). In particular, if
k+1>d/a and F? = 1, we obtain a k-cocycle:

C
chk(ag, a1, ..., aK) = cxtr’(yao[F, a1] - - - [F, ak]) = Ektr(yF[F, a0l[F,a1] - [F, ax])-

o S[chk] = [chk™]
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Dixmier traces and cyclic cocycles

Cyclic theories and Holder functions

Recall the following facts:
@ If ac C*(M) and F € WO(M,E), [F,a] € LI/%(L2(M, E)). In particular, if
k+1>d/a and F? = 1, we obtain a k-cocycle:

C
chk(ag, a1, ..., aK) = cxtr’(yao[F, a1] - - - [F, ak]) = Ektr(A/F[F, a0l[F,a1] - [F, ax])-

o S[chk] = [chk™]

The mapping C°(M) — C%*(M) in cyclic theories

If k > d/o the mappings induced by the inclusion C*°(M) — C*(M)
HCK(C*(M)) — HCK(C®(M)) and HC(C®(M)) — HCk(C*(M)),

are surjective and injective, respectively.

Magnus Goffeng Detecting regularity using cyclic cocycles and singular traces



Dixmier traces and cyclic cocycles

Cyclic theories and Holder functions

Recall the following facts:
@ If ac C*(M) and F € WO(M,E), [F,a] € LI/%(L2(M, E)). In particular, if
k+1>d/a and F? = 1, we obtain a k-cocycle:

C
chk(ag, a1, ..., aK) = cxtr’(yao[F, a1] - - - [F, ak]) = Ektr(A/F[F, a0l[F,a1] - [F, ax])-

o S[chk] = [chk™]

The mapping C°(M) — C%*(M) in cyclic theories

If k > d/o the mappings induced by the inclusion C*°(M) — C*(M)
HCK(C*(M)) — HCK(C®(M)) and HC(C®(M)) — HCk(C*(M)),

are surjective and injective, respectively.

Open questions

@ What happens with surjectivity/injectivity for k +1 < d/a? E.g. is
ch; : Kj(C*(M)) — HC;(C*(M)) injective for j < d/a?

@ What aspects of HC*(C%(M)) are computable?

<
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Dixmier traces and cyclic cocycles

“Singular” cyclic cocycles

A singular state w € (£°°(IN)/co(IN))* gives rise to a singular trace

N
T
try : LYP(H) = C, tro(T) =w Zic1 il T) , for T >0.
log(2 + N) "
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Dixmier traces and cyclic cocycles

“Singular” cyclic cocycles

A singular state w € (£°°(IN)/co(IN))* gives rise to a singular trace

N
T
try : LYP(H) = C, tro(T) =w Zic1 il T) , for T >0.
log(2 + N) "

“Singular” Chern characters

Assume that (A, H, F) is a (k, c0)-summable Fredholm module with F2 = 1 and
w € (£>°(IN)/co(IN))* is a singular state. We define ¢,_1 , € C;f_l and &, € CK by

C
Ck,w(a0, a1, - -, ak—1) = Ektrw(’Y’:[F, ao][F, a1] - - - [F, ak—1]).

C
Ehw(@0,a1, - a) i= Zltww (YFaolF, 1] -+ [F aul).
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Dixmier traces and cyclic cocycles

“Singular” cyclic cocycles

A singular state w € (£°°(IN)/co(IN))* gives rise to a singular trace

S 1k (T)

trw  LY°(H) = ©,  tro(T) =
r (H) — ro(T) w<log(2+N)

> , for T >0.
N

“Singular” Chern characters

Assume that (A, H, F) is a (k, c0)-summable Fredholm module with F2 = 1 and
w € (£>°(IN)/co(IN))* is a singular state. We define ¢,_1 , € C;f_l and &, € CK by

C
Ck,w(a0, a1, - -, ak—1) = Ektrw(’Y’:[F, ao][F, a1] - - - [F, ak—1]).

C
Ehw(@0,a1, - a) i= Zltww (YFaolF, 1] -+ [F aul).

v

General properties

@ Both ¢k, and &, are closed giving rise to classes [c ] € HCK~1(A) and
[€k,] € HHK(A).
® S[ck,w] =0 and Bléx.w] = [ckw]-
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Dixmier traces and cyclic cocycles

The situation on manifolds

Henceforth, assume F € WO(M, E) satisfies F2 =1 (e.g. F =D |P|™1).
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Dixmier traces and cyclic cocycles

The situation on manifolds

Henceforth, assume F € WO(M, E) satisfies F2 =1 (e.g. F =D |P|™1).

The Lipschitz case

The Fredholm module (Lip(M), L>(M, E), F) is (d, co)-summable. Set
o :=o0o(F) € C>°(S*M,End(7*E)). Then

k—1

Ckw(a0,a1, .-y ak—1) 1= Cd/s MtTE(’Yff [T{c.a})ds

Jj=0

k
Ekwl(ao, a1, ..., ak) == Cd/ tre(yoao | [{o, 27})dS
s*M

j=1
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Dixmier traces and cyclic cocycles

The situation on manifolds

Henceforth, assume F € WO(M, E) satisfies F2 =1 (e.g. F = D|P|71).

The Lipschitz case

The Fredholm module (Lip(M), L>(M, E), F) is (d, co)-summable. Set
o :=o0o(F) € C>°(S*M,End(7*E)). Then
k—1

Ckw(a0,a1, .-y ak—1) 1= Cd/s MtTE(’YG [T{c.a})ds

Jj=0

k
Ekwl(ao, a1, ..., ak) == Cd/ tre(yoao | [{o, 27})dS
s*M

j=1

Some analytic subtleties

@ For f € WL4(M), ||[F, f]ll zd.co ~ ||V Fll;a (Rochberg-Semmes,
Connes-Sullivan-Teleman).

@ On the other hand, for p > d, ||[F, f]||zp.cc ~ Hf||Bd/,, (Rochberg-Semmes).
p, 00
Note C*(M) = BS, oo(M) € BJ,,, ..(M).
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Dixmier traces and cyclic cocycles

The situation on manifolds

Henceforth, assume F € WO(M, E) satisfies F2 =1 (e.g. F = D|P|71).

The Lipschitz case

The Fredholm module (Lip(M), L>(M, E), F) is (d, co)-summable. Set
o :=o0o(F) € C>°(S*M,End(7*E)). Then
k—1

Ckw(a0,a1, .-y ak—1) 1= Cd/s MtTE(’YG [T{c.a})ds

Jj=0

k
Ekwl(ao, a1, ..., ak) == Cd/ tre(yoao | [{o, 27})dS
s*M

j=1

Some analytic subtleties

@ For f € WL4(M), ||[F, f]ll zd.co ~ ||V Fll;a (Rochberg-Semmes,
Connes-Sullivan-Teleman).

@ On the other hand, for p > d, ||[F, f]||zp.cc ~ Hf||Bd/,, (Rochberg-Semmes).
p, 00
Note C*(M) = BS, oo(M) € BJ,,, ..(M).

C>®(M) is dense in W19(M) but not in B/, 00(M)!
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An example on ST

An example on S!

To compute Dixmier traces, we need additional mapping properties

Sobolev mapping properties

Let F € WO(M). If « € (0,1), s € (—,0) and a € C*(M) then [F, a] extends to a
continuous operator

[F,a] : WS(M) = A=S/212(M) — Wste (M) = A=6T)/212(\).
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An example on ST

An example on S!

To compute Dixmier traces, we need additional mapping properties

Sobolev mapping properties

Let F € WO(M). If « € (0,1), s € (—,0) and a € C*(M) then [F, a] extends to a
continuous operator

[F,a] : WS(M) = A=S/212(M) — Wste (M) = A=6T)/212(\).

Computing Dixmier traces

If Fj € WO(M) and a; € C% (M) for j =0,1,...,k and ZJ’-‘:I aj = d, then for any
singular state w € (£*°/cp)*

tre (Foao[F1,a1] - - - [Fk, ak]) = w (ZkN_1<FOaO[F17 21l [Fi aler, ek>L2> )

log(2 + N)

where (ex)ken is any orthonormal eigenbasis associated with an elliptic operator on
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An example on S!, continued

Consider F € WO(S1), where S! C T defined by
V. f
Ff(z) := by / flw). dw
S

i 1z—w

The Szegd projection P := (F +1)/2 projects onto the Hardy space H?(S!) C L?(S?).
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An example on S!, continued
Consider F € WO(S1), where S! C T defined by
. f
Ff(z) == H/ W) 4y
S

i 1z—w

The Szegd projection P := (F +1)/2 projects onto the Hardy space H?(S!) C L?(S?).

Ultraviolet divergence of H'/2-mapping degree
If a,b € C/2(S1) and w € (£ /co)*,
ZkN:O k(akb_k — a_kbk)>

@,w(a,b) =w < log(2 + N)

where a; and by denote the respective function’s Fourier coefficients.
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An example on S!, continued

Consider F € WO(S1), where S! C T defined by
V. f
Ff(z) := H/ W) 4,
S

i 1z—w

The Szegd projection P := (F +1)/2 projects onto the Hardy space H?(S!) C L?(S?).

Ultraviolet divergence of H'/2-mapping degree

If a,b € C/2(S1) and w € (£ /co)*,
ZkN:O k(akb_k — a_kbk)>

@,w(a,b) =w < log(2 + N)

where a; and by denote the respective function’s Fourier coefficients.

For a € H1/2(Sl,51) its mapping degree is given by

degy2(a) = 5= [ a%da = tx(@P = DIP.allP.a"]) = D k(laif — Ja-il?).

27 P

o
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An example on S!, continued

Consider F € WO(S1), where S! C T defined by
V. f
Ff(z) := H/ W) 4,
S

i 1z—w

The Szegd projection P := (F +1)/2 projects onto the Hardy space H?(S!) C L?(S?).

Ultraviolet divergence of H'/2-mapping degree

If a,b € C/2(S1) and w € (£ /co)*,
ZkN:O k(akb_k — a_kbk)>

@,w(a,b) =w < log(2 + N)

where a; and by denote the respective function’s Fourier coefficients.

For a € H1/2(Sl,51) its mapping degree is given by

degy2(a) = 5= [ a%da = tx(@P = DIP.allP.a"]) = D k(laif — Ja-il?).

27 P

o

In fact, if x € K1(C!/2(S1)) has Chern character chyyi1(x) € HC2k+1(C1/2(S1)), then
(e2,w,chi(x)) = (2,0, Sch3(x)) = (S¢2,w, ch3(x)) = 0.
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An example on S!, continued

For j1 € £°(N), we define w,, € C/2(S1) by

(e o]
wy(z) = 222_"/2#"(22 +z77).
n=0
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An example on S!, continued

For j1 € £°(N), we define w,, € C/2(S1) by
> n n
wyu(z) == 222_"/2#"(22 +z77).
n=0

By a Littlewood-Paley decomposition one sees

Wi € BaL oo (1) \ [Ua<oo BY5 (ST U (SY)]
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An example on S!, continued

For j1 € £°(N), we define w,, € C/2(S1) by
ad n n
wyu(z) == 222_"/2#"(22 +z77).
n=0
By a Littlewood-Paley decomposition one sees
1/2 1/2 1/2
wy € ch{,oo(sl) \ |:UC7<°°BP7/Q (shu Fp,/q (51)] .
Using the formula on the previous page, one computes

N
ano Bnitn

tro (Pwy (1 — P)w,/ P) = 2% <(N+1)"%(2)

) o p € L°(N).
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An example on S!, continued

For j1 € £°(N), we define w,, € C/2(S1) by
> n n
wyu(z) == 222_"/2#"(22 +z77).
n=0

By a Littlewood-Paley decomposition one sees

Wi € BaL oo (1) \ [Ua<oo BY5 (ST U (SY)]

Using the formula on the previous page, one computes

N
ano Bnitn

tro (Pwy (1 — P)w,/ P) = 2% <(N+1)"%(2)

) o p € L°(N).

@ For p=p' =1, try,(Pwi(1 — P)wy P) = (log(2)) 1.
° o (Pwy, (11— P)W#/) = tro(Pwyu (1 — P)w,/ P).
@ The linear span of
{[e2,w] : weE (£5°/c)*} C ker(HCl(C1/2(Sl)) — HCY(C>=(sh)))

is infinite-dimensional and pairs with HC;(C'/2(S')) through non-measurable
operators.
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Thanks

Thanks for your attention!
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Advertisement

Masterclass 22-26/8, 2016
Copenhagen

Sums of self-adjoint operators:
Kasparov products and applications
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